Background: Burn injuries present a significant global health challenge. Among the most severe long-term consequences are contractures, which can lead to functional impairments and disfigurement. Understanding and predicting the evolution of post-burn wounds is essential for developing effective treatment strategies.
View Article and Find Full Text PDFBiomech Model Mechanobiol
August 2025
We present a continuum hypothesis-based two-dimensional biomorphoelastic model describing post-burn scar hypertrophy and contraction. The model is based on morphoelasticity for permanent deformations and combined with a chemical-biological model that incorporates cellular densities, collagen density, and the concentration of chemoattractants. We perform a sensitivity analysis for the independent parameters of the model and focus on the effects on the features of the post-burn dermal thickness given a low myofibroblast apoptosis rate.
View Article and Find Full Text PDFWe consider the stability analysis of a two-dimensional model for post-burn contraction. The model is based on morphoelasticity for permanent deformations and combined with a chemical-biological model that incorporates cellular densities, collagen density, and the concentration of chemoattractants. We formulate stability conditions depending on the decay rate of signaling molecules for both the continuous partial differential equations-based problem and the (semi-)discrete representation.
View Article and Find Full Text PDFBiomech Model Mechanobiol
February 2023
We consider a two-dimensional biomorphoelastic model describing post-burn scar contraction. This model describes skin displacement and the development of the effective Eulerian strain in the tissue. Besides these mechanical components, signaling molecules, fibroblasts, myofibroblasts, and collagen also play a significant role in the model.
View Article and Find Full Text PDFNeural Comput Appl
January 2022
Unlabelled: Burn injuries can decrease the quality of life of a patient tremendously, because of esthetic reasons and because of contractions that result from them. In severe case, skin contraction takes place at such a large extent that joint mobility of a patient is significantly inhibited. In these cases, one refers to a contracture.
View Article and Find Full Text PDFJ Math Biol
August 2021
To deal with permanent deformations and residual stresses, we consider a morphoelastic model for the scar formation as the result of wound healing after a skin trauma. Next to the mechanical components such as strain and displacements, the model accounts for biological constituents such as the concentration of signaling molecules, the cellular densities of fibroblasts and myofibroblasts, and the density of collagen. Here we present stability constraints for the one-dimensional counterpart of this morphoelastic model, for both the continuous and (semi-) discrete problem.
View Article and Find Full Text PDFBiomech Model Mechanobiol
December 2021
We consider a one-dimensional morphoelastic model describing post-burn scar contraction. Contraction can lead to a limited range of motion (contracture). Reported prevalence of burn scar contractures are 58.
View Article and Find Full Text PDF