Publications by authors named "Gerrald A Lodewijk"

Stem cell-based embryo models provide an alternative system to study an elusive period of development. Programmed mouse embryo models have recently been generated by activating two endogenous regulatory elements via epigenome editing. In this forum article, we discuss this achievement along with the potential of translating it to engineering models of human embryogenesis.

View Article and Find Full Text PDF

Stem cell-based embryo models (SEMs) have the potential to transform our understanding of early human embryogenesis. A critical step in engineering SEMs is the generation of the major cell types that compose preimplantation embryos including two primary extraembryonic lineages: (i) trophoblast cells, which are crucial for implantation and the establishment of maternal-fetal exchange, and (ii) hypoblast cells, which contribute to yolk sac formation. In addition, both cell types provide key signaling cues necessary for embryonic development.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs) can self-organize into structures with spatial and molecular similarities to natural embryos. During development, embryonic and extraembryonic cells differentiate through activation of endogenous regulatory elements while co-developing via cell-cell interactions. However, engineering regulatory elements to self-organize ESCs into embryo models remains underexplored.

View Article and Find Full Text PDF

In this study, we investigated recurrent copy number variations (CNVs) in the 19p12 locus, which are associated with neurodevelopmental disorders. The two genes in this locus, ZNF675 and ZNF681, arose via gene duplication in primates, and their presence in several pathological CNVs in the human population suggests that either or both of these genes are required for normal human brain development. ZNF675 and ZNF681 are members of the Krüppel-associated box zinc finger (KZNF) protein family, a class of transcriptional repressors important for epigenetic silencing of specific genomic regions.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs) can self-organize into developmental patterns with spatial organization and molecular similarity to that of early embryonic stages. This self-organization of ESCs requires transmission of signaling cues, via addition of small molecule chemicals or recombinant proteins, to induce distinct embryonic cellular fates and subsequent assembly into structures that can mimic aspects of early embryonic development. During natural embryonic development, different embryonic cell types co-develop together, where each cell type expresses specific fate-inducing transcription factors through activation of non-coding regulatory elements and interactions with neighboring cells.

View Article and Find Full Text PDF

Time-lapse microscopy is the only method that can directly capture the dynamics and heterogeneity of fundamental cellular processes at the single-cell level with high temporal resolution. Successful application of single-cell time-lapse microscopy requires automated segmentation and tracking of hundreds of individual cells over several time points. However, segmentation and tracking of single cells remain challenging for the analysis of time-lapse microscopy images, in particular for widely available and non-toxic imaging modalities such as phase-contrast imaging.

View Article and Find Full Text PDF

Ever since the availability of genomes from Neanderthals, Denisovans, and ancient humans, the field of evolutionary genomics has been searching for protein-coding variants that may hold clues to how our species evolved over the last ∼600,000 years. In this study, we identify such variants in the human-specific NOTCH2NL gene family, which were recently identified as possible contributors to the evolutionary expansion of the human brain. We find evidence for the existence of unique protein-coding NOTCH2NL variants in Neanderthals and Denisovans which could affect their ability to activate Notch signaling.

View Article and Find Full Text PDF

The large family of KRAB zinc finger (KZNF) genes are transcription factors implicated in recognizing and repressing repetitive sequences such as transposable elements (TEs) in our genome. Through successive waves of retrotransposition-mediated insertions, various classes of TEs have invaded mammalian genomes at multiple timepoints throughout evolution. Even though most of the TE classes in our genome lost the capability to retrotranspose millions of years ago, it remains elusive why the KZNFs that evolved to repress them are still retained in our genome.

View Article and Find Full Text PDF

Endosomal sorting complex required for transport (ESCRT) complex proteins regulate biogenesis and release of extracellular vesicles (EVs), which enable cell-to-cell communication in the nervous system essential for development and adult function. We recently showed human loss-of-function (LOF) mutations in ESCRT-III member CHMP1A cause autosomal recessive microcephaly with pontocerebellar hypoplasia, but its mechanism was unclear. Here, we show Chmp1a is required for progenitor proliferation in mouse cortex and cerebellum and progenitor maintenance in human cerebral organoids.

View Article and Find Full Text PDF

Genetic changes causing brain size expansion in human evolution have remained elusive. Notch signaling is essential for radial glia stem cell proliferation and is a determinant of neuronal number in the mammalian cortex. We find that three paralogs of human-specific NOTCH2NL are highly expressed in radial glia.

View Article and Find Full Text PDF