Publications by authors named "Gerardo Sanchez-Martinez"

The climate change-driven increase in heat wave frequency, intensity and duration, along with megatrends of urbanization and population ageing are worsening the global heat and health crisis. The speed and scale of implementation of public health and adaptation activities is insufficient and inequitable, and the deployment of solutions is uncoordinated and not systematic. We propose a "people centered" cooling framework to protect the person wherever they may be.

View Article and Find Full Text PDF

Background: The increased use of chemicals leads to a continuous deposition of chemicals in the environment and to a continuous increase in exposure of the global and the European population. Comprehensive burden of disease analyses are however still missing for many countries.

Methods: Using the World Health Organization's Environmental Burden of Disease (EBD) approach and combining data from the European Human Biomonitoring (HBM) dashboard with disease and population data, we estimated the comprehensive attributable burden (AB) for the year 2021, in the best-case quantified by disability-adjusted life years (DALY).

View Article and Find Full Text PDF

Climate change is causing serious damage to natural and social systems, as well as having an impact on human health. Among the direct effects of climate change is the rise in global surface temperatures and the increase in the frequency, duration, intensity and severity of heat waves. In addition, understanding of the adaptation process of the exposed population remains limited, posing a challenge in accurately estimating heat-related morbidity and mortality.

View Article and Find Full Text PDF

Climate change is the greatest threat to human health, with one of its direct effects being global warming and its impact on health. Currently, the world is experiencing an increase in the mean global temperature, but this increase affects different populations to different degrees. This is due to the fact that individual, demographic, geographical and social factors influence vulnerability and the capacity to adapt.

View Article and Find Full Text PDF

Climate change is currently regarded as the greatest global threat to human health, and its health-related consequences take different forms according to age, sex, socioeconomic level, and type of territory. The aim of this study is to ascertain the differences in vulnerability and the heat-adaptation process through the minimum mortality temperature (MMT) among the Spanish population aged ≥65 years by territorial classification. A retrospective, longitudinal, ecological time-series study, using provincial data on daily mortality and maximum daily temperature across the period 1983-2018, was performed, differentiating between urban and nonurban populations.

View Article and Find Full Text PDF

The capacity for adaptation to climate change is limited, and the elderly rank high among the most exposed population groups. To date, few studies have addressed the issue of heat adaptation, and little is known about the long-term effects of exposure to heat. One indicator that allows the ascertainment of a population's level of adaptation to heat is the minimum mortality temperature (MMT), which links temperature and daily mortality.

View Article and Find Full Text PDF

Adverse health effects from extreme heat remain a major risk, especially in a changing climate. Several European countries have implemented heat health action plans (HHAPs) to prevent ill health and excess mortality from heat. This paper assesses the state of implementation of HHAPs in the WHO European Region and discusses barriers and successes since the early 2000s.

View Article and Find Full Text PDF

Background: The objective of this study was to identify which air pollutants, atmospheric variables and health determinants could influence COVID-19 mortality in Spain. This study used information from 41 of the 52 provinces in Spain (from Feb. 1, to May 31, 2021).

View Article and Find Full Text PDF

This study aims to identify the combined role of environmental pollutants and atmospheric variables at short term on the rate of incidence (TIC) and on the hospital admission rate (TIHC) due to COVID-19 disease in Spain. This study used information from 41 of the 52 provinces of Spain (from Feb. 1, 2021 to May 31, 2021).

View Article and Find Full Text PDF

Background: There are studies that analyze the role of meteorological variables on the incidence and severity of COVID-19, and others that explore the role played by air pollutants, but currently there are very few studies that analyze the impact of both effects together. This is the aim of the current study. We analyzed data corresponding to the period from February 1 to May 31, 2020 for the City of Madrid.

View Article and Find Full Text PDF

Scientific evidence suggests that Saharan dust intrusions in Southern Europe contribute to the worsening of multiple pathologies and increase the concentrations of particulate matter (PM) and other pollutants. However, few studies have examined whether Saharan dust intrusions influence the incidence and severity of COVID-19 cases. To address this question, in this study we carried out generalized linear models with Poisson link between incidence rates and daily hospital admissions and average daily concentrations of PM, NO, and O in nine Spanish regions for the period from February 1, 2020 to December 31, 2020.

View Article and Find Full Text PDF

Research that analyzes the effect of different environmental factors on the impact of COVID-19 focus primarily on meteorological variables such as humidity and temperature or on air pollution variables. However, noise pollution is also a relevant environmental factor that contributes to the worsening of chronic cardiovascular diseases and even diabetes. This study analyzes the role of short-term noise pollution levels on the incidence and severity of cases of COVID-19 in Madrid from February 1 to May 31, 2020.

View Article and Find Full Text PDF

Climate change has important population health impacts, and cities are often on the frontlines. However, health is reported to be less active in climate adaptation than other sectors. To contribute to better understanding urban health adaptation efforts and identifying gaps we developed a City Climate Health Adaptation Typology and tested it with adaptation actions of 106 large world cities (population > 1 million) reported to a major publicly-available adaptation database.

View Article and Find Full Text PDF

The Mediterranean Basin is undergoing a warming trend with longer and warmer summers, an increase in the frequency and the severity of heat waves, changes in precipitation patterns and a reduction in rainfall amounts. In this unique populated region, which is characterized by significant gaps in the socio-economic levels particularly between the North (Europe) and South (Africa), parallel with population growth and migration, increased water demand and forest fires risk - the vulnerability of the Mediterranean population to human health risks increases significantly. Indeed, climatic changes impact the health of the Mediterranean population directly through extreme heat, drought or storms, or indirectly by changes in water availability, food provision and quality, air pollution and other stressors.

View Article and Find Full Text PDF

The analysis of local climate conditions to test artificial urban boundaries and related climate hazards through modelling tools should become a common practice to inform public authorities about the benefits of planning alternatives. Different finishing materials and sheltering objects within urban canyons (UCs) can be tested, predicted and compared through quantitative and qualitative understanding of the relationships between the microclimatic environment and subjective thermal assessment. This process can work as support planning instrument in the early design phases as has been done in this study that aims to analyze the thermal stress within typical UCs of Bilbao (Spain) in summertime through the evaluation of Physiologically Equivalent Temperature using .

View Article and Find Full Text PDF

Introduction: Direct health effects of extreme temperatures are a significant environmental health problem in Lithuania, and could worsen further under climate change. This paper attempts to describe the change in environmental temperature conditions that the urban population of Vilnius could experience under climate change, and the effects such change could have on excess heat-related and cold-related mortality in two future periods within the 21st century.

Methods: We modelled the urban climate of Vilnius for the summer and winter seasons during a sample period (2009-2015) and projected summertime and wintertime daily temperatures for two prospective periods, one in the near (2030-2045) and one in the far future (2085-2100), under the Representative Concentration Pathway (RCP) 8.

View Article and Find Full Text PDF
Article Synopsis
  • Urban air pollution, particularly particulate matter (PM), poses a significant health threat in Skopje, with limited previous research on its effects.
  • In 2012, long-term exposure to PM resulted in an estimated 1199 premature deaths and substantial healthcare costs, with figures between 570 and 1470 million euros.
  • Implementing measures to lower PM levels to EU and WHO guidelines could considerably reduce mortality and hospital admissions for respiratory and cardiovascular diseases in the city.
View Article and Find Full Text PDF

Background: Excessive summer heat is a serious environmental health problem in several European cities. Heat-related mortality and morbidity is likely to increase under climate change scenarios without adequate prevention based on locally relevant evidence.

Methods: We modelled the urban climate of Antwerp for the summer season during the period 1986-2015, and projected summer daily temperatures for two periods, one in the near (2026-2045) and one in the far future (2081-2100), under the Representative Concentration Pathway (RCP) 8.

View Article and Find Full Text PDF

Under future warming conditions, high ambient temperatures will have a significant impact on population health in Europe. The aim of this paper is to quantify the possible future impact of heat on population mortality in European countries, under different climate change scenarios. We combined the heat-mortality function estimated from historical data with meteorological projections for the future time laps 2035-2064 and 2071-2099, developed under the Representative Concentration Pathways (RCP) 4.

View Article and Find Full Text PDF

Background: Excessive summer heat is a serious environmental health problem in Skopje, the capital and largest city of the former Yugoslav Republic of Macedonia. This paper attempts to forecast the impact of heat on mortality in Skopje in two future periods under climate change and compare it with a historical baseline period.

Methods: After ascertaining the relationship between daily mean ambient air temperature and daily mortality in Skopje, we modelled the evolution of ambient temperatures in the city under a Representative Concentration Pathway scenario (RCP8.

View Article and Find Full Text PDF

"How far are we in implementing climate change and health action in the WHO European Region?" This was the question addressed to representatives of WHO European Member States of the working group on health in climate change (HIC). Twenty-two Member States provided answers to a comprehensive questionnaire that focused around eight thematic areas (Governance; Vulnerability, impact and adaptation (health) assessments; Adaptation strategies and action plans; Climate change mitigation; Strengthening health systems; Raising awareness and building capacity; Greening health services; and Sharing best practices). Strong areas of development are climate change vulnerability and impact assessments, as well as strengthening health systems and awareness raising.

View Article and Find Full Text PDF

The adverse health effects from hot weather and heat waves represent significant public health risks in vulnerable areas worldwide. Rising temperatures due to climate change are aggravating these risks in a context of fast urbanization, population growth and societal ageing. However, environmental heat-related health effects are largely preventable through adequate preparedness and responses.

View Article and Find Full Text PDF