Publications by authors named "Gary Saulnier"

Electrical impedance tomography (EIT) is a bedside imaging technique in which voltage data arising from current applied on electrodes is used to compute images of admittivity in real time. Due to the severe ill-posedness of the inverse problem, good spatial resolution poses a challenge in EIT. Conversely, the temporal resolution is high, facilitating dynamic bedside imaging.

View Article and Find Full Text PDF

Objective: This paper introduces a new method of simultaneous acquisition of electrocardiogram (ECG) signals and electrical impedance tomography (EIT) measurements on active electrodes, i.e. electrodes that are applying current, in an EIT system.

View Article and Find Full Text PDF

Pulmonary vein stenosis (PVS) is a complex disease that requires repeated percutaneous interventions. Electrical impedance tomography (EIT) is a functional imaging technique that provides real-time images of pulmonary perfusion and ventilation. We aimed to determine the feasibility of EIT to evaluate ventilation/perfusion in PVS before and after catheter-based interventions.

View Article and Find Full Text PDF

Objective: This article introduces the Adaptive Current Tomograph 5 (ACT5) Electrical Impedance Tomography (EIT) system. ACT5 is a 32 electrode applied-current multiple-source EIT system that can display real-time images of conductivity and susceptivity at 27 frames per second. The adaptive current sources in ACT5 can apply fully programmable current patterns with frequencies varying from 5 kHz to 500 kHz.

View Article and Find Full Text PDF

The current source is one of the most critical circuits in electrical impedance tomography (EIT) hardware systems. The simplicity and excellent performance of the Howland current source makes it a prime candidate for this role in EIT systems. Although the Howland source and its family may be the best option for the high-frequency EIT operation, its low frequency noise may also limit the implementation of a system to simultaneously collect electrocardiogram (ECG) and EIT signals from the electrodes.

View Article and Find Full Text PDF

A novel method for measuring the output impedance of current sources in an EIT system is implemented and tested. The paper shows that the proposed method can be used at the time of operation while the load is attached to the EIT system. the results also show that performance of the system improves when the shunt impedance values from the proposed technique are used to set the adaptive sources as opposed to the shunt impedance values acquired through open circuit measurements.

View Article and Find Full Text PDF

This study hypothesised that benign and tumour-bearing uterine tissue could be differentiated by their unique electrical bioimpedance patterns, with the aid of artificial intelligence. Twenty whole, uterine specimens were obtained at the time of hysterectomy. A total of 11 benign and 9 malignant specimens were studied.

View Article and Find Full Text PDF

A novel method for measuring the shunt impedance of current sources in Electrical Impedance Tomography (EIT) systems is introduced. In an EIT system, electrical currents with theoretical sum of zero, are applied to the body and any mismatch between the currents results in current going through an extra grounded electrode. Since the N - 1 current patterns applied in an N-electrode EIT system are orthogonal to each other, by introducing an additional linearly- independent current pattern, a system of linear equations can be established from which the unknown shunt impedances can be calculated.

View Article and Find Full Text PDF

In Electrical Impedance Tomography (EIT) the coaxial cables used to connect the electrodes to the electronics have long been a concern due to their impact on system performance. Driving the shield of the cable is useful, since it mitigates the shunt capacitance. However, this approach introduces complexity and, sometimes, stability issues.

View Article and Find Full Text PDF

Objective: EIT systems, particularly those that use a parallel, multiple source architecture, require current sources with very high output impedance. To meet this requirement, sources often use complex analog circuits and require manual or electronically-controlled adjustments. The goal is to implement a current source with simple, adjustment-free analog electronics with high effective output impedance even with significant stray impedance at its output.

View Article and Find Full Text PDF

Objective: In electrical impedance tomography (EIT), we apply patterns of currents on a set of electrodes at the external boundary of an object, measure the resulting potentials at the electrodes, and, given the aggregate dataset, reconstruct the complex conductivity and permittivity within the object. It is possible to maximize sensitivity to internal conductivity changes by simultaneously applying currents and measuring potentials on all electrodes but this approach also maximizes sensitivity to changes in impedance at the interface.

Methods: We have, therefore, developed algorithms to assess contact impedance changes at the interface as well as to efficiently and simultaneously reconstruct internal conductivity/permittivity changes within the body.

View Article and Find Full Text PDF

Electrical impedance tomography (EIT) is a non-invasive imaging technology that has been extensively studied for monitoring lung function of neonatal and adult subjects, especially in neonatal intensive care unit (NICU) and intensive care unit (ICU) environments. The sources of the total impedance in these applications include internal organs, near-boundary tissues, electrode-skin impedance, electrodes and conducting wires. This total impedance must be considered for system design and setting voltage gain since it will contribute to the measured voltage.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements show that acoustic-electric channels can transmit power and data through thin metallic barriers, with potential applications in various industries like aerospace and oil.
  • This research focuses on data transmission through a cylindrical pipe using shear waves, employing a modulation scheme called chirp-on-off keying (Chirp-OOK) to tackle challenges like frequency selectivity and power constraints.
  • Simulation results indicate that the performance matches theoretical expectations, and a prototype system successfully transmitted data at 100 bps using about 5 mW of power in both air and water.
View Article and Find Full Text PDF

We report an Electrical Impedance Tomography device capable of detecting gravity-induced regional ventilation changes in real-time without averaging or using a contrast medium. Changes in lung ventilation are demonstrated in right and left lateral decubitus position and compared to those seen in an upright and supine normal subject.

View Article and Find Full Text PDF

We report a prototype Electrical Impedance Imaging System. It is able to detect the gravity-induced changes in the distributions of perfusion and ventilation in the lung between supine and lateral decubitus positions. Impedance data were collected on healthy volunteer subjects and 3D reconstructed images were produced in real-time, 20 frames per second on site, without using averaging or a contrast agent.

View Article and Find Full Text PDF

We present an adaptive algorithm for solving the inverse problem in electrical impedance tomography. To strike a balance between the accuracy of the reconstructed images and the computational efficiency of the forward and inverse solvers, we propose to combine an adaptive mesh refinement technique with the adaptive Kaczmarz method. The iterative algorithm adaptively generates the optimal current patterns and a locally-refined mesh given the conductivity estimate and solves for the unknown conductivity distribution with the block Kaczmarz update step.

View Article and Find Full Text PDF

We present an adaptive Kaczmarz method for solving the inverse problem in electrical impedance tomography and determining the conductivity distribution inside an object from electrical measurements made on the surface. To best characterize an unknown conductivity distribution and avoid inverting the Jacobian-related term J(T)J which could be expensive in terms of computation cost and memory in large-scale problems, we propose solving the inverse problem by applying the optimal current patterns for distinguishing the actual conductivity from the conductivity estimate between each iteration of the block Kaczmarz algorithm. With a novel subset scheme, the memory-efficient reconstruction algorithm which appropriately combines the optimal current pattern generation with the Kaczmarz method can produce more accurate and stable solutions adaptively as compared to traditional Kaczmarz- and Gauss-Newton-type methods.

View Article and Find Full Text PDF

This paper presents a method for two-way ultrasonic communication and power delivery through thick metallic enclosures without physical penetration. Acoustic-electric channels are implemented using a pair of coaxially aligned piezoelectric transducers having 25.4 mm diameters and 1 MHz nominal resonant frequencies, mounted on steel walls having lengths in the range of 57.

View Article and Find Full Text PDF
Article Synopsis
  • The paper discusses a system that enables high-power and high-data-rate transmission through solid metal barriers using ultrasound technology.
  • The system uses two piezoelectric transducers aligned on either side of a metal wall to create a channel, allowing for simultaneous power and data transmission without needing to penetrate the barrier.
  • It achieves impressive specifications, transmitting data at 17.37 Mbps and delivering 50 W of power through steel, while also suggesting future enhancements to increase performance for various military and industrial applications.
View Article and Find Full Text PDF

The linear propagation of electromagnetic and dilatational waves through a sandwiched plate piezoelectric transformer (SPPT)-based acoustic-electric transmission channel is modeled using the transfer matrix method with mixed-domain two-port ABCD parameters. This SPPT structure is of great interest because it has been explored in recent years as a mechanism for wireless transmission of electrical signals through solid metallic barriers using ultrasound. The model we present is developed to allow for accurate channel performance prediction while greatly reducing the computational complexity associated with 2- and 3-dimensional finite element analysis.

View Article and Find Full Text PDF

Electrical impedance tomography (EIT) is an imaging modality that currently shows promise for the detection and characterization of breast cancer. A very significant problem in EIT imaging is the proper modeling of the interface between the body and the electrodes. We have found empirically that it is very difficult, in a clinical setting, to assure that all electrodes make satisfactory contact with the body.

View Article and Find Full Text PDF

Electrical impedance tomography is being explored as a technique to detect breast cancer, exploiting the differences in admittivity between normal tissue and tumors. In this paper, the geometry is modeled as an infinite half space under a hand-held probe. A forward solution and a reconstruction algorithm for this geometry were developed previously by Mueller et al (1999 IEEE Trans.

View Article and Find Full Text PDF
Article Synopsis
  • Calderón's foundational paper set the stage for electrical impedance tomography (EIT) by proposing the use of external voltage patterns for reconstructing a medium's admittivity through inverse Fourier transforms.
  • We have developed a new algorithm that adapts Calderón's method to work with measurements taken from a part of the boundary and discrete electrodes, optimizing voltage or current patterns for better approximation.
  • By leveraging the redundancy in our three-dimensional measurements, we enhance the quality of the static images produced by our algorithm, improving the EIT outcomes.
View Article and Find Full Text PDF

It has been known for some time that many tumors have a significantly different conductivity and permittivity from surrounding normal tissue. This high "contrast" in tissue electrical properties, occurring between a few kilohertz and several megahertz, may permit differentiating malignant from benign tissues. Here we show the ability of electrical impedance spectroscopy (EIS) to roughly localize and clearly distinguish cancers from normal tissues and benign lesions.

View Article and Find Full Text PDF