Commun Earth Environ
September 2025
Climate change is resulting in more extreme fire weather during major heatwaves. Across temperate Europe, shrub landscapes dominate the area burned, with the moisture content of fuels during these events determining the threat posed. Current controls on the moisture content of temperate fuel constituents and their response to future extreme heatwaves are not known.
View Article and Find Full Text PDFPeatlands store more carbon (C) than any other terrestrial ecosystem and as a C sink they are vital to mitigating climate change. The keystone of many peatland ecosystems is Sphagnum, a bryophyte genus of c. 350 species found on every continent except Antarctica.
View Article and Find Full Text PDFAs the largest terrestrial carbon (C) store, peatlands are vital to meeting climate targets. Sphagnum, a genus of ca. 350 species, sustains many peatlands through its high water content and chemistry which inhibits decomposition and vascular plant proliferation.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
April 2025
Fire regimes are changing across the globe, with new wildfire behaviour phenomena and increasing impacts felt, especially in ecosystems without clear adaptations to wildfire. These trends pose significant challenges to the scientific community in understanding and communicating these changes and their implications, particularly where we lack underlying scientific evidence to inform decision-making. Here, we present a perspective on priority directions for wildfire science research-through the lens of academic and government wildfire scientists from a historically wildfire-prone (USA) and emerging wildfire-prone (UK) country.
View Article and Find Full Text PDFSoil moisture deficits and water table dynamics are major biophysical controls on peat and non-peat fires in Indonesia. Development of modern fire forecasting models in Indonesia is hampered by the lack of scalable hydrologic datasets or scalable hydrology models that can inform the fire forecasting models on soil hydrologic behaviour. Existing fire forecasting models in Indonesia use weather data-derived fire probability indices, which often do not adequately proxy the sub-surface hydrologic dynamics.
View Article and Find Full Text PDFThe oxidative ratio (OR) of an ecosystem, which reflects the ratio of O:CO associated with ecosystem gas exchanges, is an important parameter in understanding the sink of CO represented by the terrestrial biosphere. There is a growing body of ecosystem-based approaches to understand OR; however, there are still a number of unknowns. This study addressed two gaps in our understanding of the oxidation of the terrestrial biosphere: (1) What is the oxidation state of Arctic ecosystems, and in particular permafrost soils? (2) Will coupled climate and land use change cause the terrestrial organic matter oxidation state to change? The study considered eight locations along a transect from southern Sweden to northern Norway and sampled different organic matter types (soil, litter, trees, and herbaceous vegetation) as well as different soil orders (Inceptisols, Spodosols, Histosols, and Gelisols).
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
November 2016
Philos Trans R Soc Lond B Biol Sci
June 2016
J Environ Manage
May 2013
Prescribed burning is a common management technique used across many areas of the UK uplands. However, there are few data sets that assess the loss of biomass during burning and even fewer data on the effect of burning on above-ground carbon stocks and production of char. During fire the production of char occurs which represents a transfer of carbon from the short term bio-atmospheric cycle to the longer term geological cycle.
View Article and Find Full Text PDFEstimates of the greenhouse gas (GHG) fluxes resulting from sheep grazing upon upland peat soils have never been fully quantified. Previous studies have been limited to individual flux pathways or to comparing the presence to the absence of sheep grazing. Therefore, this study combines a model of the physical impact of grazing with models of: biomass production; energy usage in sheep; and peat accumulation.
View Article and Find Full Text PDFSci Total Environ
September 2012
Only a few studies have considered the N budget of peat soils and this in turn has limited the ability of studies to consider the impact of changes in climate and atmospheric deposition upon the N budget of a peat soil. This study considered the total N budget of an upland peat-covered catchment over the period 1993 to 2009. The study has shown: i) Over the period of study the total N atmospheric deposition declined from 3.
View Article and Find Full Text PDFWildfires are a common feature of peatland environments, but the carbon balance of these wildfires is often not considered and the production of refractory black carbon in these wildfires could be an important addition to carbon accumulation and mitigate losses of biomass during the fire. This study investigates the biomass and carbon losses during a moorland wildfire. Changes in above-ground carbon stocks were calculated using a combination of field data, laboratory measurements and literature values.
View Article and Find Full Text PDF