Solid-gas interactions at electrode surfaces determine the efficiency of solid-oxide fuel cells and electrolyzers. Here, the correlation between surface-gas kinetics and the crystal orientation of perovskite electrodes is studied in the model system La Sr Co Fe O . The gas-exchange kinetics are characterized by synthesizing epitaxial half-cell geometries where three single-variant surfaces are produced [i.
View Article and Find Full Text PDFStrain engineering in perovskite oxides provides for dramatic control over material structure, phase, and properties, but is restricted by the discrete strain states produced by available high-quality substrates. Here, using the ferroelectric BaTiO , production of precisely strain-engineered, substrate-released nanoscale membranes is demonstrated via an epitaxial lift-off process that allows the high crystalline quality of films grown on substrates to be replicated. In turn, fine structural tuning is achieved using interlayer stress in symmetric trilayer oxide-metal/ferroelectric/oxide-metal structures fabricated from the released membranes.
View Article and Find Full Text PDFDielectric capacitors can store and release electric energy at ultrafast rates and are extensively studied for applications in electronics and electric power systems. Among various candidates, thin films based on relaxor ferroelectrics, a special kind of ferroelectric with nanometer-sized domains, have attracted special attention because of their high energy densities and efficiencies. We show that high-energy ion bombardment improves the energy storage performance of relaxor ferroelectric thin films.
View Article and Find Full Text PDFWith the advent of increasingly elaborate experimental techniques in physics, chemistry and materials sciences, measured data are becoming bigger and more complex. The observables are typically a function of several stimuli resulting in multidimensional data sets spanning a range of experimental parameters. As an example, a common approach to study ferroelectric switching is to observe effects of applied electric field, but switching can also be enacted by pressure and is influenced by strain fields, material composition, temperature, time, Moreover, the parameters are usually interdependent, so that their decoupling toward univariate measurements or analysis may not be straightforward.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2019
Applications such as solid-state waste-heat energy conversion, infrared sensing, and thermally-driven electron emission rely on pyroelectric materials (a subclass of dielectric piezoelectrics) which exhibit temperature-dependent changes in polarization. Although enhanced dielectric and piezoelectric responses are typically found at polarization instabilities such as temperature- and chemically induced phase boundaries, large pyroelectric effects have been primarily limited in study to temperature-induced phase boundaries. Here, we directly identify the magnitude and sign of the intrinsic, extrinsic, dielectric, and secondary pyroelectric contributions to the total pyroelectric response as a function of chemistry in thin films of the canonical ferroelectric PbZrTiO ( = 0.
View Article and Find Full Text PDFTemperature- and electric-field-induced structural transitions in a polydomain ferroelectric can have profound effects on its electrothermal susceptibilities. Here, the role of such ferroelastic domains on the pyroelectric and electrocaloric response is experimentally investigated in thin films of the tetragonal ferroelectric PbZr Ti O . By utilizing epitaxial strain, a rich set of ferroelastic polydomain states spanning a broad thermodynamic phase space are stabilized.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2018
Polarization switching is a fundamental feature of ferroelectric materials, enabling a plethora of applications and captivating the attention of the scientific community for over half a century. Many previous studies considered ferroelectric switching as a purely physical process, whereas polarization is fully controlled by the superposition of electric fields. However, screening charge is required for thermodynamic stability of the single domain state that is of interest in many technological applications.
View Article and Find Full Text PDFThe ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses.
View Article and Find Full Text PDFAtomic force microscopy is widely used for nanoscale characterization of materials by scientists worldwide. The long-held belief of ambient AFM is that the tip is generally chemically inert but can be functionalized with respect to the studied sample. This implies that basic imaging and scanning procedures do not affect surface and bulk chemistry of the studied sample.
View Article and Find Full Text PDFEpitaxial strain has been widely used to tune crystal and domain structures in ferroelectric thin films. New avenues of strain engineering based on varying the composition at the nanometer scale have been shown to generate symmetry breaking and large strain gradients culminating in large built-in potentials. In this work, we develop routes to deterministically control these built-in potentials by exploiting the interplay between strain gradients, strain accommodation, and domain formation in compositionally graded PbZr1-xTixO3 heterostructures.
View Article and Find Full Text PDF