Publications by authors named "Gabor Mocsar"

Although it is known that labeling antibodies with fluorescent dyes impairs their function, the underlying mechanism remains unclear. In this study, we show that multiple antibody functions decline in a strikingly similar way as the degree of labeling increases, suggesting that labeling induces a global structural change affecting the entire IgG molecule. Fluorescence anisotropy decay experiments revealed faster nanosecond-scale dynamics in labeled antibodies.

View Article and Find Full Text PDF

The plasma membrane is a dynamic structure surrounded by the extracellular matrix. Although stimulation of transmembrane proteins by soluble ligands takes place in this environment, its influence on receptor activation is usually overlooked. In the current manuscript, we quantitatively measured the concentration of epidermal growth factor (EGF) at the cell membrane and found that ligand distribution is non-homogeneous due to two concentration peaks causing significantly higher EGF concentrations at the membrane than in the bulk solution.

View Article and Find Full Text PDF

H2A.Z-nucleosomes are present in both euchromatin and heterochromatin and it has proven difficult to interpret their disparate roles in the context of their stability features. Using an in situ assay of nucleosome stability and DT40 cells expressing engineered forms of the histone variant we show that native H2A.

View Article and Find Full Text PDF

White adipocytes store lipids, have a large lipid droplet and few mitochondria. Brown and beige adipocytes, which produce heat, are characterized by high expression of uncoupling protein (UCP) 1, multilocular lipid droplets, and large amounts of mitochondria. The rs1421085 T-to-C single-nucleotide polymorphism (SNP) of the human gene interrupts a conserved motif for ARID5B repressor, resulting in adipocyte type shift from beige to white.

View Article and Find Full Text PDF

ABCG2 is an exporter-type ABC protein that can expel numerous chemically unrelated xeno- and endobiotics from cells. When expressed in tumor cells or tumor stem cells, ABCG2 confers multidrug resistance, contributing to the failure of chemotherapy. Molecular details orchestrating substrate translocation and ATP hydrolysis remain elusive.

View Article and Find Full Text PDF

Every day, billions of our cells die and get cleared without inducing inflammation. When, clearance is improper, uncleared cells undergo secondary necrosis and trigger inflammation. In addition, proper efferocytosis would be required for inducing resolution of inflammation, thus clearance deficiencies in the long term lead to development of various chronic inflammatory diseases.

View Article and Find Full Text PDF

Upregulation of the voltage-gated potassium channel K1.3 is implicated in a range of autoimmune and neuroinflammatory diseases, including rheumatoid arthritis, psoriasis, multiple sclerosis, and type I diabetes. Understanding the expression, localization, and trafficking of K1.

View Article and Find Full Text PDF

Doxorubicin (Dox), a widely used anticancer DNA-binding drug, affects chromatin in multiple ways, and these effects contribute to both its efficacy and its dose-limiting side effects, especially cardiotoxicity. Here, we studied the effects of Dox on the chromatin binding of the architectural proteins high mobility group B1 (HMGB1) and the linker histone H1, and the transcription factor retinoic acid receptor (RARα) by fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) in live cells. At lower doses, Dox increased the binding of HMGB1 to DNA while decreasing the binding of the linker histone H1.

View Article and Find Full Text PDF

Brown and beige adipocytes have multilocular lipid droplets, express uncoupling protein (UCP) 1, and promote energy expenditure. In rodents, when the stimulus of browning subsides, parkin-dependent mitophagy is activated and dormant beige adipocytes persist. In humans, however, the molecular events during the beige to white transition have not been studied in detail.

View Article and Find Full Text PDF

Voltage-gated Kv1.3 potassium channels are essential for maintaining negative membrane potential during T-cell activation. They interact with membrane-associated guanylate kinases (MAGUK-s) via their C-terminus and with TCR/CD3, leading to enrichment at the immunological synapse (IS).

View Article and Find Full Text PDF

IL-15 plays a pivotal role in the long-term survival of T cells and immunological memory. Its receptor consists of three subunits (IL-15Rα, IL-2/15Rβ, and γ). IL-15 functions mainly via -presentation (TP), during which an APC expressing IL-15 bound to IL-15Rα presents the ligand to the βγ receptor-heterodimer on a neighboring T/NK cell.

View Article and Find Full Text PDF

Förster Resonance Energy Transfer (FRET) is the radiationless transfer of energy from an excited donor to an acceptor molecule and depends upon the distance and orientation of the molecules as well as the extent of overlap between the donor emission and acceptor absorption spectra. FRET permits to study the interaction of proteins in the living cell over time and in different subcellular compartments. Different intensity-based algorithms to measure FRET using microscopy have been described in the literature.

View Article and Find Full Text PDF

Thermogenic brown and beige adipocytes oxidize metabolic substrates producing heat, mainly by the mitochondrial uncoupling protein UCP1, and can thus counteract obesity. Masked beige adipocytes possess white adipocyte-like morphology, but can be made thermogenic by adrenergic stimuli. We investigated the regulation of mitophagy upon thermogenic activation of human masked and mature beige adipocytes.

View Article and Find Full Text PDF

The voltage-gated proton channel Hv1 is widely expressed, among others, in immune and cancer cells, it provides an efficient cytosolic Hextrusion mechanism and regulates vital functions such as oxidative burst, migration and proliferation. Here we demonstrate the presence of human Hv1 (hHv1) in the placenta/chorion-derived mesenchymal stem cells (cMSCs) using RT-PCR. The voltage- and pH-dependent gating of the current is similar to that of hHv1 expressed in cell lines and that the current is blocked by 5-chloro-2-guanidinobenzimidazole (ClGBI) and activated by arachidonic acid (AA).

View Article and Find Full Text PDF
Article Synopsis
  • Doxorubicin (Dox) significantly impacts the aggregation and localization of the histones H2A and H2B, revealing distinct behaviors for each histone.
  • In Jurkat leukemia cells, Dox causes H2B to accumulate in the cytoplasm while H2A shows notable aggregation within the nuclei, detectable through advanced microscopy techniques.
  • The movement of H2B from the nucleus to the cytoplasm is not influenced by common biochemical inhibitors, but is fully blocked by PYR-41, which may imply that Dox's effects could enhance its cancer-fighting properties while also potentially leading to adverse side effects.
View Article and Find Full Text PDF

Single Plane Illumination Microscopy (SPIM) revolutionized time lapse imaging of live cells and organisms due to its high speed and reduced photodamage. Quantitative mapping of molecular (co)mobility by fluorescence (cross-)correlation spectroscopy (F(C)CS) in a SPIM has been introduced to reveal molecular diffusion and binding. A complementary aspect of interactions is proximity, which can be studied by Förster resonance energy transfer (FRET).

View Article and Find Full Text PDF

Interleukin-2 (IL-2) and IL-15 play pivotal roles in T cell activation, apoptosis, and survival, and are implicated in leukemias and autoimmune diseases. Their heterotrimeric receptors share their β- and γ-chains, but have distinct α-chains. Anti-IL-2Rα (daclizumab) therapy targeting cell surface-expressed receptor subunits to inhibit T cell proliferation has only brought limited success in adult T cell leukemia/lymphoma (ATL) and in multiple sclerosis.

View Article and Find Full Text PDF

The heterodimeric receptor complex of IL-9 consists of the cytokine-specific α-subunit and the common γ -chain shared with other cytokines, including IL-2, a central regulator of T cell function. We have shown previously the bipartite spatial relationship of IL-9 and IL-2 receptors at the surface of human T lymphoma cells: in addition to common clusters, expression of the two receptor kinds could also be observed in segregated membrane areas. Here we analyzed further the mutual cell surface organization of IL-9 and IL-2 receptors.

View Article and Find Full Text PDF

The high electric field across the plasma membrane might influence the conformation and behavior of transmembrane proteins that have uneven charge distributions in or near their transmembrane regions. Membrane depolarization of T cells occurs in the tumor microenvironment and in inflamed tissues because of K release from necrotic cells and hypoxia affecting the expression of K channels. However, little attention has been given to the effect of membrane potential (MP) changes on membrane receptor function.

View Article and Find Full Text PDF

MHC glycoproteins form supramolecular clusters with interleukin-2 and -15 receptors in lipid rafts of T cells. The role of highly expressed MHC I in maintaining these clusters is unknown. We knocked down MHC I in FT7.

View Article and Find Full Text PDF

With the evolving technology in CMOS integration, new classes of 2D-imaging detectors have recently become available. In particular, single photon avalanche diode (SPAD) arrays allow detection of single photons at high acquisition rates (≥ 100 kfps), which is about two orders of magnitude higher than with currently available cameras. Here we demonstrate the use of a SPAD array for imaging fluorescence correlation spectroscopy (imFCS), a tool to create 2D maps of the dynamics of fluorescent molecules inside living cells.

View Article and Find Full Text PDF

The importance of membrane rafts in HIV-1 infection is still in the focus of interest. Here, we report that new monoclonal anticholesterol IgG antibodies (ACHAs), recognizing clustered membrane cholesterol (e.g.

View Article and Find Full Text PDF

Activation of poly(ADP-ribose) polymerase-1 (PARP1) has been shown to mediate cell death induced by genotoxic stimuli. The role of poly(ADP-ribose) glycohydrolase (PARG), the enzyme responsible for polymer degradation, has been largely unexplored in the regulation of cell death. Using lentiviral gene silencing we generated A549 lung adenocarcinoma cell lines with stably suppressed PARG and PARP1 expression (shPARG and shPARP1 cell lines, respectively) and determined parameters of apoptotic and necrotic cell death following hydrogen peroxide exposure.

View Article and Find Full Text PDF

Interleukin-2 and interleukin-15 (IL-2, IL-15) are key participants in T and NK cell activation and function. Sharing the beta and gamma receptor subunits results in several common functions: e.g.

View Article and Find Full Text PDF