Publications by authors named "Gabby B Hul"

Insulin resistance (IR) is an early marker of cardiometabolic deterioration which may develop heterogeneously in key metabolic organs, including the liver (LIR) and skeletal muscle (MIR). This tissue-specific IR is characterized by distinct metabolic signatures, but the role of the gut microbiota in its etiology remains unclear. Here, we profiled the gut microbiota, its metabolites and the plasma metabolome in individuals with either a LIR or MIR phenotype ( = 233).

View Article and Find Full Text PDF

Aims: Individuals with liver insulin-resistant (LIR) or muscle insulin-resistant (MIR) phenotypes may respond differently to dietary interventions. Given the interaction between insulin resistance and cardiovascular risk, this sub-analysis of the PERSON study examined whether a personalized diet according to MIR or LIR phenotypes improves vascular function and cardiovascular disease risk factors.

Materials And Methods: We randomized 119 participants to a 12-week low-fat, high-protein, high-fibre diet (LFHP; may be optimal for LIR) or Mediterranean diet (high in monounsaturated fat, HMUFA; may be optimal for MIR).

View Article and Find Full Text PDF

Obesity is associated with chronic inflammation and metabolic complications, including insulin resistance (IR). Immune cells drive inflammation through the rewiring of intracellular metabolism. However, the impact of obesity-related IR on the metabolism and functionality of circulating immune cells, like monocytes, remains poorly understood.

View Article and Find Full Text PDF

Aim: The aim of this study is to investigate associations between the physical activity (PA) spectrum (sedentary behavior to exercise) and tissue-specific insulin resistance (IR).

Methods: We included 219 participants for analysis (median [IQR]: 61 [55; 67] years, BMI 29.6 [26.

View Article and Find Full Text PDF

Precision nutrition based on metabolic phenotype may increase the effectiveness of interventions. In this proof-of-concept study, we investigated the effect of modulating dietary macronutrient composition according to muscle insulin-resistant (MIR) or liver insulin-resistant (LIR) phenotypes on cardiometabolic health. Women and men with MIR or LIR (n = 242, body mass index [BMI] 25-40 kg/m, 40-75 years) were randomized to phenotype diet (PhenoDiet) group A or B and followed a 12-week high-monounsaturated fatty acid (HMUFA) diet or low-fat, high-protein, and high-fiber diet (LFHP) (PhenoDiet group A, MIR/HMUFA and LIR/LFHP; PhenoDiet group B, MIR/LFHP and LIR/HMUFA).

View Article and Find Full Text PDF

It is well-established that the etiology of type 2 diabetes differs between individuals. Insulin resistance (IR) may develop in different tissues, but the severity of IR may differ in key metabolic organs such as the liver and skeletal muscle. Recent evidence suggests that these distinct tissue-specific IR phenotypes may also respond differentially to dietary macronutrient composition with respect to improvements in glucose metabolism.

View Article and Find Full Text PDF

Disturbances in skeletal muscle lipid metabolism may precede or contribute to the development of whole body insulin resistance. In this study, we examined fasting and postprandial skeletal muscle fatty acid (FA) handling in insulin resistant (IR) men. Thirty men with the metabolic syndrome (MetS) (National Cholesterol Education Program-Adult Treatment Panel III) were included in this sub-study to the LIPGENE study, and divided in two groups (IR and control) based on the median of insulin sensitivity (S(I) = 2.

View Article and Find Full Text PDF

Elevated plasma concentrations of remnant-like particle cholesterol (RLP-C) are atherogenic. However, factors that determine RLP-C are not fully understood. This study evaluates which factors affect RLP-C in the fasting and postprandial state, using multiple regression analyses in a large cohort of lean and obese participants.

View Article and Find Full Text PDF

Differences in fat metabolism are of importance in relation to energy balance. Low fat-oxidizers (LFO) are thought to be more prone for developing obesity. We studied whether LFO have different fasting adipose tissue (AT) protein profiles than high fat-oxidizers (HFO).

View Article and Find Full Text PDF

Aim/hypothesis: Obesity is associated with increased triacylglycerol (TAG) storage in adipose tissue and insulin resistance. The mobilization of stored TAG is mediated by hormone-sensitive lipase (HSL) and the recently discovered adipose triglyceride lipase (ATGL). The aim of the present study was to examine whether ATGL and HSL mRNA and protein expression are altered in insulin-resistant conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists wanted to see if taking extra vitamin D (cholecalciferol) could change how our bodies use energy and fat, so they did a study with 10 healthy young men for 7 days.
  • They measured things like energy use and fat breakdown but found that even though vitamin D levels in their blood went up, their energy use and fat-related genes didn’t change.
  • The study concluded that taking this vitamin D didn’t make any difference in how the body handled energy or fat after a week, even with less calcium in their diet.
View Article and Find Full Text PDF

Resistance exercise has recently been shown to improve whole-body insulin sensitivity in healthy males. Whether this is accompanied by an exercise-induced decline in skeletal muscle glycogen and/or lipid content remains to be established. In the present study, we determined fibre-type-specific changes in skeletal muscle substrate content following a single resistance exercise session.

View Article and Find Full Text PDF

Background: Evidence from molecular and animal research and epidemiologic investigations indicates that calcium intake may be inversely related to body weight, possibly through alterations in 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] metabolism.

Objective: We tested whether energy and substrate metabolism and adipose tissue enzyme messenger RNA (mRNA) expression can be altered by dietary calcium intake in healthy, nonobese, human volunteers consuming an isocaloric diet.

Design: Twelve healthy men [age: 28 +/- 2 y; body mass index (BMI; in kg/m(2)): 25.

View Article and Find Full Text PDF

The aim of the present study was to determine whether a single session of resistance exercise improves whole-body insulin sensitivity in healthy men for up to 24 h. Twelve male subjects (23 +/- 1 years) were studied over a period of 4 days during which they consumed a standardized diet, providing 0.16 +/- 0.

View Article and Find Full Text PDF

In humans, beta-adrenergic stimulation increases energy and fat metabolism. In the case of beta1-adrenergic stimulation, it is fueled by an increased lipolysis. We examined the effect of beta2-adrenergic stimulation, with and without a blocker of lipolysis, on thermogenesis and substrate oxidation.

View Article and Find Full Text PDF

The aim of the present study was to investigate the effect of long-term continuation of low-intensity exercise training on weight maintenance, substrate metabolism, and beta-adrenergic-mediated fat oxidation in weight-reduced obese men. Preceding this part of the study, subjects lost 15 +/- 6 kg of body weight by energy restriction with or without low-intensity exercise training. Twenty-nine subjects (diet group, n = 15; diet + exercise group, n = 14) participated in the follow-up study of 40 weeks in which the former diet + exercise group continued their exercise training program.

View Article and Find Full Text PDF

Objective: Our objective was to investigate the thermogenic efficacy of single oral doses of the novel beta(3)-adrenergic receptor agonist L-796568 [(R )-N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]-phenyl]-4-[4-[4-(trifluoromethyl)phenyl]thiazol-2-yl]-benzenesulfonamide, dihydrochloride] in humans.

Methods: Twelve healthy overweight to obese men participated in this 2-center, 3-period, randomized, placebo-controlled, crossover trial. In each period subjects received 250 mg L-796568, 1000 mg L-796568, or placebo.

View Article and Find Full Text PDF