The aim of this study was to formulate probiotics-loaded pellets in a tablet form to improve storage stability, acid tolerability, and in vivo intestinal protective effect. Bacteria-loaded pellets primarily prepared with hydroxypropyl methylcellulose acetate succinate were compressed into tablets with highly compressible excipients and optimized for flow properties, hardness, and disintegration time. The optimized probiotic tablet consisted of enteric-coated pellets (335 mg), microcrystalline cellulose (Avicel PH102, 37.
View Article and Find Full Text PDFChitosan-based film-forming gel is regarded as a promising vehicle for topical delivery of antimicrobial agents to skin wounds, since it protects from microbial infection and the cationic polymer itself possesses antibacterial activity. In this study, possible synergistic interaction against common skin pathogens between the cationic polymer and tyrothricin (TRC), a cyclic polypeptide antibiotic, was investigated, by determining the concentration to inhibit 90% of bacterial isolates (MIC). The addition of the polysaccharide to TRC dramatically reduced the MIC values of TRC by 1/33 and 1/4 against both methicillin-resistant and methicillinsusceptible Staphylococcus aureus, respectively.
View Article and Find Full Text PDFThe aim of this study was to formulate probiotics-encapsulated pellets with hydroxypropyl methylcellulose acetate succinate (HPMCAS) using a dry powder coating technique to improve the storage stability, acid resistance, and intestinal adherence of viable bacteria (Lactobacillus acidophilus and Bifidobacteria animalis ssp. Lactis). Dry coated pellet (DCP) loaded with probiotics was optimized with respect to the quantity of the HPMCAS, an enteric coating polymer (108 mg), and the kinds and amounts of plasticizer (triethyl citrate, 15.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
July 2014
The purpose of this study is to investigate the recoverability of freeze-dried chitosan microspheres (MS). The factors influencing the integrity of chitosan MS during freeze-drying and rehydration procedures were determined, with focusing on choosing a suitable rehydration method and a freeze-drying excipient. Mean MS size, size distribution and sphericity of recovered chitosan MS were evaluated.
View Article and Find Full Text PDFThe aim of this study was to design self-microemulsifying tablets for pH-independent fast release of poorly soluble candesartan cilexetil (CDC). To improve the solubility of CDC, a self-microemulsifying drug delivery system (SMEDDS) was prepared composed of Capryol 90, Tween 80 and tetraglycol at a ratio of 5:35:60. Drug containing SMEDDS was adsorbed onto Fujicalin and Neusilin UFL2, respectively, used as solidification carriers and subsequently compressed into tablets (self-microemulsifying tablet, SMET).
View Article and Find Full Text PDFThe purpose of this study was to design chitosan microspheres (MS) loaded with superparamagnetic iron oxide nanoparticles (SPIO) suitable for anti-cancer embolotherapy detectable by MRI. Deformable chitosan MS loaded with varying SPIO concentrations (SPIO-chitosan MS) were prepared by ionotropic gelation and a porogenic technique using polyethylene glycol, followed by genipin crosslinking. Adding SPIO nanoparticles to chitosan MS did not significantly affect the chitosan MS morphology.
View Article and Find Full Text PDFThe aims of this study were to design and characterise doxorubicin-loaded chitosan microspheres for anti-cancer chemoembolisation. Doxorubicin-loaded chitosan microspheres were prepared by emulsification and cross-linking methods. Doxorubicin-chitosan solution was initially complexed with tripolyphosphate (TPP) to improve drug loading capabilities.
View Article and Find Full Text PDF