Publications by authors named "Fumiyoshi Yamazaki"

By the effort to identify candidate signaling molecules important for the formation of robust circadian rhythms in the suprachiasmatic nucleus (SCN), the mammalian circadian center, here we characterize the role of α2δ proteins, synaptic molecules initially identified as an auxiliary subunit of the voltage dependent calcium channel, in circadian rhythm formation. In situ hybridization study demonstrated that type 3 α2δ gene (α2δ3) was strongly expressed in the SCN. Mice without this isoform (Cacna2d3) did not maintain proper circadian locomotor activity rhythms under a constant light (LL) condition, whereas under a constant dark (DD) condition, these mice showed a similar period length and similar light-responsiveness as compared to wild type mice.

View Article and Find Full Text PDF

Rationale: The key to successful experiments in matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is to apply the matrix uniformly to the sample. With the development of automated equipment, uniform matrix application has made great progress while the sample preparation required to acquire a better image becomes complicated.

Methods: The approach is to apply the matrix uniformly to tape and adhere it to the tissue section.

View Article and Find Full Text PDF

Aging has been established as a major risk factor for prevalent diseases and hence, the development of anti-aging medicines is of great importance. Recently, herbal fermented beverages have emerged as a promising source of potential anti-aging drug. Pru, a traditional Cuban refreshment produced by decoction and fermentation of multispecies plants with sugar, has been consumed for many years and is claimed to have multiple medicinal properties.

View Article and Find Full Text PDF

Current histological and anatomical analysis techniques, including fluorescence in situ hybridisation, immunohistochemistry, immunofluorescence, immunoelectron microscopy and fluorescent fusion protein, have revealed great distribution diversity of mRNA and proteins in the brain. However, the distributional pattern of small biomolecules, such as lipids, remains unclear. To this end, we have developed and optimised imaging mass spectrometry (IMS), a combined technique incorporating mass spectrometry and microscopy, which is capable of comprehensively visualising biomolecule distribution.

View Article and Find Full Text PDF

Epidemiological studies suggest that poor nutrition during pregnancy influences offspring predisposition to experience developmental and psychiatric disorders. Animal studies have shown that maternal undernutrition leads to behavioral impairment, which is linked to alterations in monoaminergic systems and inflammation in the brain. In this study, we focused on the ethanolamine plasmalogen of the brain as a possible contributor to behavioral disturbances observed in offspring exposed to maternal undernutrition.

View Article and Find Full Text PDF

Objective: n-3 polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have beneficial effects on atherosclerosis. Although specific salutary actions have been reported, the detailed distribution of n-3 polyunsaturated fatty acids in plaque and their relevance in disease progression are unclear. Our aim was to assess the pharmacodynamics of EPA and DHA and their metabolites in atherosclerotic plaques.

View Article and Find Full Text PDF

N-3 fatty acids, including docosahexaenoic acid (DHA), have a beneficial effect in both pain and psychiatric disorders. In fact, we previously reported that stress-induced pain prolongation might be mediated through the suppression of the G-protein coupled-receptor 40/free fatty acid receptor 1 (GPR40/FFAR1), which is activated by DHA and long-chain fatty acids. However, the involvement of GPR40/FFAR1 ligands in the development of stress-induced chronic pain has not yet been described.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the distribution of atropine, a drug used for treating eye diseases, in ocular tissues using a technique called MALDI-IMS.
  • Atropine was found to accumulate mainly in the tear menisci, with lower concentrations in surrounding tissues, and the levels varied between different parts of the eye.
  • The research demonstrates how atropine moves from the front to the back of the eye and shows that MALDI-IMS is a valuable method for studying drug distribution in eye samples.
View Article and Find Full Text PDF
Article Synopsis
  • The study examined lipid changes in the dorsal root ganglion (DRG) after sciatic nerve transection (SNT) using MALDI-IMS.
  • It was found that arachidonic acid-containing phosphatidylcholine (AA-PC) increased significantly, while levels of certain other lipids decreased.
  • These changes are linked to neuropathic pain, suggesting that targeting lysophosphatidic acid (LPA) could be a potential treatment for this condition.
View Article and Find Full Text PDF

ABCD1 is a gene responsible for X-linked adrenoleukodystrophy (X-ALD), and is critical for the transport of very long-chain fatty acids (VLCFA) into peroxisomes and subsequent β-oxidation. VLCFA-containing lipids accumulate in X-ALD patients, although the effect of ABCD1-deficiency on each lipid species in the central nervous system has not been fully characterized. In this study, each phospholipid and lysophospholipid species in Abcd1-deficient mice brains were profiled by liquid chromatography-mass spectrometry.

View Article and Find Full Text PDF

Object: The wall thickness of intracranial aneurysms (IAs) is heterogeneous. Although thinning of the IA wall is thought to contribute to IA rupture, the underlying mechanism remains poorly understood. Recently, imaging mass spectroscopy (IMS) has been used to reveal the distribution of phospholipids in vascular diseases.

View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) enables visualization of the distribution of a range of biomolecules by integrating biochemical information from mass spectrometry with positional information from microscopy. IMS identifies a target molecule. In addition, IMS enables global analysis of biomolecules containing unknown molecules by detecting the ratio of the molecular weight to electric charge without any target, which makes it possible to identify novel molecules.

View Article and Find Full Text PDF

Lipids comprise the primary component of cell membranes. Imaging mass spectrometry is increasingly being used to visualize membranous lipids in clinical specimens, and it has revealed that abnormal lipid metabolism is related to the development of diseases. To characterize cell populations which are rare and sparsely localized in tissues, we conducted time-of-flight secondary ion mass spectrometry (TOF-SIMS) analyses of individual cells sorted by fluorescence activated cell sorting (FACS) and applied the method to analyze breast cancer stem cells (CSCs).

View Article and Find Full Text PDF

The 3β-hydroxysteroid dehydrogenase (3β-HSD) is an enzyme crucial for steroid synthesis. Two different 3β-HSD isoforms exist in humans. Classically, HSD3B2 was considered the principal isoform present in the adrenal.

View Article and Find Full Text PDF

Lhx9 is a member of the LIM homeobox gene family. It is expressed during mammalian embryogenesis in the brain including the pineal gland. Deletion of Lhx9 results in sterility due to failure of gonadal development.

View Article and Find Full Text PDF

The purpose of this study was to expand our knowledge of small RNAs, which are known to function within protein complexes to modulate the transcriptional output of the cell. Here we describe two previously unrecognized, small RNAs, termed pY RNA1-s1 and pY RNA1-s2 (processed Y RNA1-stem -1 and -2), thereby expanding the list of known small RNAs. pY RNA1-s1 and pY RNA1-s2 were discovered by RNA sequencing and found to be 20-fold more abundant in the retina than in 14 other rat tissues.

View Article and Find Full Text PDF

Jet-lag symptoms arise from temporal misalignment between the internal circadian clock and external solar time. We found that circadian rhythms of behavior (locomotor activity), clock gene expression, and body temperature immediately reentrained to phase-shifted light-dark cycles in mice lacking vasopressin receptors V1a and V1b (V1a(-/-)V1b(-/-)). Nevertheless, the behavior of V1a(-/-)V1b(-/-) mice was still coupled to the internal clock, which oscillated normally under standard conditions.

View Article and Find Full Text PDF

Synchronous oscillations of thousands of cellular clocks in the suprachiasmatic nucleus (SCN), the circadian centre, are coordinated by precisely timed cell-cell communication, the principle of which is largely unknown. Here we show that the amount of RGS16 (regulator of G protein signalling 16), a protein known to inactivate Gαi, increases at a selective circadian time to allow time-dependent activation of intracellular cyclic AMP signalling in the SCN. Gene ablation of Rgs16 leads to the loss of circadian production of cAMP and as a result lengthens circadian period of behavioural rhythm.

View Article and Find Full Text PDF

GPR7, now known as a receptor of neuropeptide B and neuropeptide W, is expressed in neurons of the suprachiasmatic nucleus (SCN), the mammalian circadian center. By the quantitative in situ hybridization, we demonstrated that GPR7 mRNA showed a significant circadian rhythm in the SCN showing a peak at early subjective night in both light-dark and constant dark. We characterized the circadian feature of GPR7-knockout mice, but the period length and the phase-dependent phase shift to light exposure were not disordered in GPR7-knockout mice.

View Article and Find Full Text PDF

Autophagy is a cellular process that nonspecifically degrades cytosolic components and is involved in many cellular responses. We found that amino sugars with a free amino group such as glucosamine, galactosamine and mannosamine induced autophagy via an mTOR-independent pathway. Glucosamine-induced autophagy at concentrations of at least 500 microM to over 40 mM.

View Article and Find Full Text PDF

The mammalian clock genes, Period and Cryptochrome (Cry), regulate circadian rhythm. We show that circadian rhythmicity and rhythmic expression of Period in the nuclei of inflammatory synovial cells and spleen cells are disturbed in mouse models of experimental arthritis. Expressions of other clock genes, Bmal1 and Dbp, are also disturbed in spleen cells by arthritis induction.

View Article and Find Full Text PDF

Malfunction of the circadian clock has been linked to the pathogenesis of a variety of diseases. We show that mice lacking the core clock components Cryptochrome-1 (Cry1) and Cryptochrome-2 (Cry2) (Cry-null mice) show salt-sensitive hypertension due to abnormally high synthesis of the mineralocorticoid aldosterone by the adrenal gland. An extensive search for the underlying cause led us to identify type VI 3beta-hydroxyl-steroid dehydrogenase (Hsd3b6) as a new hypertension risk factor in mice.

View Article and Find Full Text PDF