ACS Appl Mater Interfaces
February 2024
We report the design, synthesis, and evaluation of stimuli-responsive nanoscale micelles that can be activated by light to induce a cytotoxic effect. Micelles were assembled from amphiphilic units made of a photoactivatable ferrocenyl linker, connected on one side to a lipophilic chain, and on the other side to a hydrophilic pegylated chain. experiments indicated that pristine micelles ("off" state) were nontoxic to MCF-7 cancer cells, even at high concentrations, but became potent upon photoactivation ("on" state).
View Article and Find Full Text PDFTitanium dioxide nanoparticles were combined with carbon nanotubes and gold to develop improved photocatalysts for the production of hydrogen from water. The entangled nature of the nanotubes allowed for the integration of the photoactive hybrid catalyst, as a packed-bed, in a microfluidic photoreactor, and the chips were studied in the photocatalyzed continuous flow production of hydrogen. The combination of titanium dioxide with carbon nanotubes and gold significantly improved hydrogen production due to a synergistic effect between the multi-component system and the stabilization of the active catalytic species.
View Article and Find Full Text PDFEnviron Toxicol Pharmacol
October 2021
Potentially, the toxicity of multiwalled carbon nanotubes (MWCNTs) can be reduced in a safe-by-design strategy. We investigated if genotoxicity and pulmonary inflammation of MWCNTs from the same batch were lowered by a) reducing length and b) introducing COOH-groups into the structure. Mice were administered: 1) long and pristine MWCNT (CNT-long) (3.
View Article and Find Full Text PDFSci Rep
July 2020
Most of the highly radioactive spent nuclear fuel (SNF) around the world is destined for final disposal in deep-mined geological repositories. At the end of the fuel's useful life in a reactor, about 96% of the SNF is still UO. Thus, the behaviour of UO in SNF must be understood and evaluated under the weathering conditions of geologic disposal, which extend to periods of hundreds of thousands of years.
View Article and Find Full Text PDFThe γ-irradiation of a biphasic system composed of tri--butylphosphate in tetrapropylene hydrogen (TPH) in contact with palladium(ii) nitrate in nitric acid aqueous solution led to the formation of two precipitates. A thorough characterization of these solids was performed by means of various analytical techniques including X-Ray Diffraction (XRD), Thermal Gravimetric Analysis coupled with a Differential Scanning Calorimeter (TGA-DSC), X-ray Photoelectron Spectroscopy (XPS), InfraRed (IR), RAMAN and Nuclear Magnetic Resonance (NMR) Spectroscopy, and ElectroSpray Ionization Mass Spectrometry (ESI-MS). Investigations showed that the two precipitates exhibit quite similar structures.
View Article and Find Full Text PDFA novel nanohybrid catalyst was developed by assembling copper ferrite nanoparticles on carbon nanotubes. The supramolecular catalyst was applied to the one-pot azidation/1,3-dipolar cycloaddition of various substrates, at room temperature, and in an aqueous medium. The nanohybrid could also be recycled and reused by means of magnetic recovery.
View Article and Find Full Text PDFA challenge in molecular spintronics is to control the magnetic coupling between magnetic molecules and magnetic electrodes to build efficient devices. Here we show that the nature of the magnetic ion of anchored metal complexes highly impacts the exchange coupling of the molecules with magnetic substrates. Surface anchoring alters the magnetic anisotropy of the cobalt(II)-containing complex (Co(Pyipa)), and results in blocking of its magnetization due to the presence of a magnetic hysteresis loop.
View Article and Find Full Text PDFSpin cross-over molecules show the unique ability to switch between two spin states when submitted to external stimuli such as temperature, light or voltage. If controlled at the molecular scale, such switches would be of great interest for the development of genuine molecular devices in spintronics, sensing and for nanomechanics. Unfortunately, up to now, little is known on the behaviour of spin cross-over molecules organized in two dimensions and their ability to show cooperative transformation.
View Article and Find Full Text PDFSequential growth in solution (SGS) was performed for the magnetic cyanide-bridged network obtained from the reaction of Ni(H(2)O)(2+) and Cr(CN)(6)(3-) (referred to as NiCr) on a Si(100) wafer already functionalized by a Ni(II) complex. The growth process led to isolated dots and a low coverage of the surface. We used the NiFe network as a template to improve the growth of the magnetic network.
View Article and Find Full Text PDFControlling the elaboration of Coordination Networks (CoNet) on surfaces at the nanoscale remains a challenge. One suitable technique is the Sequential Growth in Solution (SGS), which has the advantage to be simple, cheap and fast. We addressed two issues in this article: i) the controlled synthesis of ultra thin films of CoNet (thickness lower than 10 nm), and ii) the investigation of the influence of the precursors' concentration on the growth process.
View Article and Find Full Text PDFNanoscale
January 2010
Recently, the organisation of magnetic molecules on carbon nanotubes has raised much interest due to their possible interesting contribution to molecular spintronics. In this paper, we describe the assembly on SWNTs of a magnetic polyoxometalate encompassing a single cobalt ion (CoPOM) and its isostructural diamagnetic zinc analogue (ZnPOM). The simple magnetic behaviour of CoPOM and the availability of its diamagnetic counterpart render these POM@NTs systems interesting model compounds for the study of molecular electronics devices based on carbon nanotubes and magnetic molecules.
View Article and Find Full Text PDFIsolated nanometric objects of the nickel-iron cyanide-bridged coordination network are obtained by a sequential growth on "molecular seeds" anchored on Si(100) surfaces. Control of the density and the size of the nano-objects is achieved by imposing a growth process without side nucleation.
View Article and Find Full Text PDFTwo new compounds based on O(3)PCH(2)PO(3)(4-) ligands and {Mo(V)(2)O(4)} dimeric units have been synthesized and structurally characterized. The dodecanuclear Mo(V) polyoxomolybdate species in (NH(4))(18)[(Mo(V)(2)O(4))(6)(OH)(6)(O(3)PCH(2)PO(3))(6)] x 33 H(2)O (1) is a cyclohexane-like ring in a chair conformation with pseudo S(6) symmetry. In the solid state, the wheels align side by side, thus delimiting large rectangular voids.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2008
The aim of this work was to perform highly localized spectroscopic surface measurements by combining time-resolved laser spectroscopy and scanning near-field optical microscopy. The final purpose of that was to study surface sorption at the molecular level of trivalent ions in the framework of nuclear waste disposal assessment. Time-resolved laser spectroscopy presents the advantages of being selective, sensitive, and noninvasive and scanning near-field optical microscopy is a promising technique for high resolution surface speciation.
View Article and Find Full Text PDFThe grafting of a monolayer of 6 nm superparamagnetic cyanide-bridged CsNiCr nanoparticles was achieved on a Ni(II)-functionalized Si(100) substrate; magnetic studies reveals that the grafted nanoparticles are nearly magnetically isolated within the monolayer.
View Article and Find Full Text PDF