Publications by authors named "Franz-Philipp Schmidt"

The exsolution of metal nanoparticles offers a promising strategy to enhance catalyst stability and fine-tune metal-support interactions. Expanding the use of exsolved nanoparticles in heterogeneous catalysis requires the development of low-temperature ( < 400 °C) exsolution processes. In this study, we report the synthesis of phase-pure ZnFeRhO metal oxide precursors with a spinel-type crystal structure.

View Article and Find Full Text PDF

Understanding a catalytic reaction requires tools that elucidate the structure of the catalyst surface and subsurface, ideally at atomic resolution and under reaction conditions. Operando electron microscopy meets this requirement in some cases, but fails in others where the required reaction conditions cannot be reached or lead to an unwanted influence of the electron beam on the reactant and catalyst. We introduce ILIAS (identical location imaging and spectroscopy) in combination with a quasi in situ approach to disentangle the effect of heat and gas on the surface of nanoparticles from the effect of the electron beam.

View Article and Find Full Text PDF

Future carbon management strategies require storage in elemental form, achievable through a sequence of CO hydrogenation reactions. Hydrogen is recycled from molecular intermediates by dehydrogenation, and side product acetylene selectively hydrogenated to ethylene. Existing Pd alloy catalysts for gas purification underperform in concentrated feeds, necessitating novel concepts.

View Article and Find Full Text PDF

The production of green hydrogen through alkaline water electrolysis is the key technology for the future carbon-neutral industry. Nanocrystalline CoO catalysts are highly promising electrocatalysts for the oxygen evolution reaction and their activity strongly benefits from Fe surface decoration. However, limited knowledge of decisive catalyst motifs at the atomic level during oxygen evolution prevents their knowledge-driven optimization.

View Article and Find Full Text PDF

Ammonia is a storage molecule for hydrogen, which can be released by catalytic decomposition. Inexpensive iron catalysts suffer from a low activity due to a too strong iron-nitrogen binding energy compared to more active metals such as ruthenium. Here, we show that this limitation can be overcome by combining iron with cobalt resulting in a Fe-Co bimetallic catalyst.

View Article and Find Full Text PDF

Spinel-type catalysts are promising anode materials for the alkaline oxygen evolution reaction (OER), exhibiting low overpotentials and providing long-term stability. In this study, we compared two structurally equal CoFeO spinels with nominally identical stoichiometry and substantially different OER activities. In particular, one of the samples, characterized by a metastable precatalyst state, was found to quickly achieve its steady-state optimum operation, while the other, which was initially closer to the ideal crystallographic spinel structure, never reached such a state and required 168 mV higher potential to achieve 1 mA/cm.

View Article and Find Full Text PDF

Over the past decade, single-atom alloys (SAAs) have been a lively topic of research due to their potential for achieving novel catalytic properties and circumventing some known limitations of heterogeneous catalysts, such as scaling relationships. In researching SAAs, it is important to recognize experimental evidence of peculiarities in their electronic structure. When an isolated atom is embedded in a matrix of foreign atoms, it exhibits spectroscopic signatures that reflect its surrounding chemical environment.

View Article and Find Full Text PDF

We use cathodoluminescence (CL) spectroscopy in a transmission electron microscope to probe the radial breathing mode of plasmonic silver nanodisks. A two-mirror detection system sandwiching the sample collects the CL emission in both directions, that is, backward and forward with respect to the electron beam trajectory. We unambiguously identify a spectral shift of about 8 nm in the CL spectra acquired from both sides and show that this asymmetry is induced by the electron beam itself.

View Article and Find Full Text PDF

Atomic vibrations and phonons are an excellent source of information on nanomaterials that we can access through a variety of methods including Raman scattering, infrared spectroscopy, and electron energy-loss spectroscopy (EELS). In the presence of a plasmon local field, vibrations are strongly modified and, in particular, their dipolar strengths are highly enhanced, thus rendering Raman scattering and infrared spectroscopy extremely sensitive techniques. Here, we experimentally demonstrate that the interaction between a relativistic electron and vibrational modes in nanostructures is fundamentally modified in the presence of plasmons.

View Article and Find Full Text PDF

Due to a vanishing dipole moment, radial breathing modes in small flat plasmonic nanoparticles do not couple to light and have to be probed with a near-field source, as in electron energy loss spectroscopy (EELS). With increasing particle size, retardation gives rise to light coupling, enabling probing breathing modes optically or by cathodoluminescence (CL). Here, we investigate single silver nanodisks with diameters of 150-500 nm by EELS and CL in an electron microscope and quantify the EELS/CL ratio, which corresponds to the ratio of full to radiative damping of the breathing mode.

View Article and Find Full Text PDF

Plasmonic gap modes provide the ultimate confinement of optical fields. Demanding high spatial resolution, the direct imaging of these modes was only recently achieved by electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). However, conventional 2D STEM-EELS is only sensitive to components of the photonic local density of states (LDOS) parallel to the electron trajectory.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the importance of the photonic local density of states (LDOS) for enhancing light-matter interactions at the nanoscale, particularly in nanophotonics and plasmonics.
  • The authors introduce a novel tomography method using electron microscopy to obtain a detailed 3D representation of the local density of states in plasmonic nanoparticles, achieving high spatial and energy resolution.
  • Their approach successfully demonstrates the ability to visualize LDOS enhancements in silver nanocuboids and coupled nanodisks, highlighting critical features related to surface roughness and particle gaps.
View Article and Find Full Text PDF

During the past decade, significant progress has been made in the field of resonant optics ranging from fundamental aspects to concrete applications. While several techniques have been introduced for the fabrication of highly defined metallic nanostructures, the synthesis of complex, free-standing three-dimensional (3D) structures is still an intriguing, but so far intractable, challenge. In this study, we demonstrate a 3D direct-write synthesis approach that addresses this challenge.

View Article and Find Full Text PDF

Spectrum imaging techniques, gaining simultaneously structural (image) and spectroscopic data, require appropriate and careful processing to extract information of the dataset. In this article we introduce a MATLAB based software that uses three dimensional data (EEL/CL spectrum image in dm3 format (Gatan Inc.'s DigitalMicrograph)) as input.

View Article and Find Full Text PDF

The coupling of plasmonic nanoparticles can strongly modify their optical properties. Here, we show that the coupling of the edges within a single rectangular particle leads to mode splitting and the formation of bonding and antibonding edge modes. We are able to unambiguously designate the modes due to the high spatial resolution of electron microscopy-based electron energy loss spectroscopy and the comparison with numerical simulations.

View Article and Find Full Text PDF

By focusing propagating surface plasmons, electromagnetic energy can be delivered to nanoscale volumes. In this context, we employ electron energy loss spectroscopy in a scanning transmission electron microscope to characterize the full plasmonic mode spectrum of a silver thin film tapered to a sharp tip. We show that the plasmon modes can be ordered in film and edge modes and corroborate our assignment through supplementary numerical simulations.

View Article and Find Full Text PDF

Dimensionality has a significant impact on the optical properties of solid-state nanostructures. For example, dimensionality-dependent carrier confinement in semiconductors leads to the formation of quantum wells, quantum wires and quantum dots. While semiconductor properties are governed by excitonic effects, the optical response of metal nanostructures is dominated by surface plasmons.

View Article and Find Full Text PDF

We map the complete plasmonic spectrum of silver nanodisks by electron energy loss spectroscopy and show that the mode which couples strongest to the electron beam has radial symmetry with no net dipole moment. Therefore, this mode does not couple to light and has escaped from observation in optical experiments. This radial breathing mode has the character of an extended two-dimensional surface plasmon with a wavenumber determined by the circular disk confinement.

View Article and Find Full Text PDF