ACS Appl Polym Mater
July 2025
Structurally colored paints based on photonic microparticles offer an intriguing alternative to conventional pigment-based colorants but face persistent challenges related to limited color vibrancy and excessive light scattering. In this work, we present a scalable strategy to fabricate water-based photonic paints using poly-(2-vinylpyridine)--poly-(methyl methacrylate) (P2VP--PMMA) microparticles formed via confined self-assembly in emulsion droplets. These microparticles exhibit a concentric lamellar morphology, resulting in a photonic bandgap in the visible spectral region.
View Article and Find Full Text PDFIn this study, we synthesized a phosphonium-based ligand, trimethyl(tetradecyl)phosphonium bromide (TTP-Br), and employed it in the postsynthesis surface treatment of Cs-oleate-capped CsPbBr nanocrystals (NCs). The photoluminescence quantum yield (PLQY) of the NCs increased from ∼60% to more than 90% as a consequence of replacing Cs-oleate with TTP-Br ligand pairs. Density functional theory calculations revealed that TTP ions bind to the NC surface by occupying Cs surface sites and orienting one of their P-CH bonds perpendicular to the surface, akin to quaternary ammonium passivation.
View Article and Find Full Text PDFWe investigate the mid-infrared chiroptical response of plasmonic nanostructures based on Al-doped ZnO and layers of an aqueous solution of Ladarixin, a chiral pharmaceutical currently under clinical trial for the treatment of type 1 diabetes. We explore the possibilities offered by localised surface plasmon resonances (LSPRs) for the enhancement of vibrational circular dichroism (VCD) of the considered chiral drug solution. Focusing on diverse plasmonic nanoshell geometries, we find that LSPRs provide an amplification factor of VCD differential absorption cross-section ranging from [Formula: see text] to [Formula: see text] thanks to near-field intensity enhancement produced by LSPRs.
View Article and Find Full Text PDFColloidal quantum dots (QDs) exhibit size-dependent, tuneable optical properties that render them useful in a wide range of technological applications. However, integration of QDs into structured materials remains a significant challenge due to their susceptibility to degradation under chemical or physical perturbations. Here, we present a facile, scalable one-pot co-assembly strategy to embed commercially available CdSe/ZnS core-shell quantum dots into photonic microparticles the confined self-assembly of a poly(styrene)--poly(2-vinylpyridine) block copolymer in emulsion droplets.
View Article and Find Full Text PDFTunable optical properties exhibited by semiconductor nanocrystals (NCs) in the near infrared (NIR) spectral region are of particular interest in various applications, such as telecommunications, bioimaging, photodetection, photovoltaics, . While lead and mercury chalcogenide NCs do exhibit exemplary optical properties in the NIR, Cu-In-Se (CISe)-based NCs are a suitable environment-friendly alternative to these toxic materials. Several reports of NIR-emitting (quasi)spherical CISe NCs have been published, but their more complex-shaped counterparts remain rather less explored.
View Article and Find Full Text PDFColloidal semiconductor nanocrystals (NCs) are an efficient and cost-effective class of nanomaterials for optoelectronic applications. Advancements in NC-based optoelectronic devices have resulted from progress in synthetic chemistry, adjustable surface properties, and optimized device architectures. Semiconductor nanoplatelets (NPLs) stand out among other NCs due to their precise growth control, yielding uniform thickness with submonolayer roughness.
View Article and Find Full Text PDFDirect manipulation of light spin-angular momentum is desired in optoelectronic applications such as, displays, telecommunications, or imaging. Generating polarized light from luminophores avoids using optical components that cause brightness losses and hamper on-chip integration of light sources. Endowing chirality to achiral emitters for direct generation of polarized light benefits from existing materials and can be achieved by chiral nanophotonics.
View Article and Find Full Text PDFObtaining efficient blue emission from CdSe nanoplatelets (NPLs) remains challenging due to charge trapping and sub-bandgap emission. Thanks to a design-of-experiments (DoE) approach, we significantly improved the NPL synthesis, obtaining precise control over the lateral aspect ratio (length/width). We raised the photoluminescence quantum efficiency up to 66% after growth of a CdS crown, with complete elimination of trap-state emission.
View Article and Find Full Text PDFHeavy-metal-free III-V colloidal quantum dots (QDs) exhibit promising attributes for application in optoelectronics. Among them, InAs QDs are demonstrating excellent optical performance with respect to absorption and emission in the near-infrared spectral domain. Recently, InAs QDs attained a substantial improvement in photoluminescence quantum yield, achieving 70% at a wavelength of 900 nm through the strategic overgrowth of a thick ZnSe shell atop the InAs core.
View Article and Find Full Text PDFThe growth of SiO shells on semiconductor nanocrystals is an established procedure and it is widely employed to provide dispersibility in polar solvents, and increased stability or biocompatibility. However, to exploit this shell to integrate photonic components on semiconductor nanocrystals, the growth procedure must be finely tunable and able to reach large particle sizes (around 100 nm or above). Here, we demonstrate that these goals are achievable through a design of experiment approach.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2024
Halide perovskite nanocrystals (NCs), specifically CsPbBr, have attracted considerable interest due to their remarkable optical properties for optoelectronic devices. To achieve high-efficiency light-emitting diodes (LEDs) based on CsPbBr nanocrystals (NCs), it is crucial to optimize both their photoluminescence quantum yield (PLQY) and carrier transport properties when they are deposited to form films on substrates. While the exchange of native ligands with didodecyl dimethylammonium bromide (DDAB) ligand pairs has been successful in boosting their PLQY, dense DDAB coverage on the surface of NCs should impede carrier transport and limit device efficiency.
View Article and Find Full Text PDFNear-Infrared (NIR) light emitting metal halides are emerging as a new generation of optical materials owing to their appealing features, which include low-cost synthesis, solution processability, and adjustable optical properties. NIR-emitting perovskite-based light-emitting diodes (LEDs) have reached an external quantum efficiency (EQE) of over 20% and a device stability of over 10,000 h. Such results have sparked an interest in exploring new NIR metal halide emitters.
View Article and Find Full Text PDFWe investigate the potential of surface plasmon polaritons at noble metal interfaces for surface-enhanced chiroptical sensing of dilute chiral drug solutions with nl volume. The high quality factor of surface plasmon resonances in both Otto and Kretschmann configurations enables the enhancement of circular dichroism differenatial absorption thanks to the large near-field intensity of such plasmonic excitations. Furthermore, the subwavelength confinement of surface plasmon polaritons is key to attain chiroptical sensitivity to small amounts of drug volumes placed around ≃100 nm by the metal surface.
View Article and Find Full Text PDFOptical microcavities grant manipulation over light-matter interactions and light propagation, enabling the fabrication of foundational optical and optoelectronic components. However, the materials used for high-performing systems, mostly bulk inorganics, are typically costly, and their processing is hardly scalable. In this work, we present an alternative way to fabricate planar optical resonators via solely solution processing while approaching the performances of conventional systems.
View Article and Find Full Text PDFInAs-based nanocrystals can enable restriction of hazardous substances (RoHS) compliant optoelectronic devices, but their photoluminescence efficiency needs improvement. We report an optimized synthesis of InAs@ZnSe core@shell nanocrystals allowing to tune the ZnSe shell thickness up to seven mono-layers (ML) and to boost the emission, reaching a quantum yield of ≈70% at ≈900 nm. It is demonstrated that a high quantum yield can be attained when the shell thickness is at least ≈3ML.
View Article and Find Full Text PDFThe controlled placement of colloidal semiconductor nanocrystals (NCs) onto planar surfaces is crucial for scalable fabrication of single-photon emitters on-chip, which are critical elements of optical quantum computing, communication, and encryption. The positioning of colloidal semiconductor NCs such as metal chalcogenides or perovskites is still challenging, as it requires a nonaggressive fabrication process to preserve the optical properties of the NCs. In this work, periodic arrays of 2500 nanoholes are patterned by electron beam lithography in a poly(methyl methacrylate) (PMMA) thin film on indium tin oxide/glass substrates.
View Article and Find Full Text PDFColloidal quantum dots (QDs) emitting in the infrared (IR) are promising building blocks for numerous photonic, optoelectronic and biomedical applications owing to their low-cost solution-processability and tunable emission. Among them, lead- and mercury-based QDs are currently the most developed materials. Yet, due to toxicity issues, the scientific community is focusing on safer alternatives.
View Article and Find Full Text PDFWe demonstrate efficient, stable, and fully RoHS-compliant near-infrared (NIR) light-emitting diodes (LEDs) based on InAs/ZnSe quantum dots (QDs) synthesized by employing a commercially available amino-As precursor. They have a record external quantum efficiency of 5.5% at 947 nm and an operational lifetime of ∼32 h before reaching 50% of their initial luminance.
View Article and Find Full Text PDFAdvances in surface chemistry of CsPbX (where X = Cl, Br or I) nanocrystals (NCs) enabled the replacement of native chain ligands in solution. However, there are few reports on ligand exchange carried out on CsPbX NC thin films. Solid-state ligand exchange can improve the photoluminescence quantum yield (PLQY) of the film and promote a change in solubility of the solid surface, thus enabling multiple depositions of subsequent nanocrystal layers.
View Article and Find Full Text PDFThe most developed approaches for the synthesis of InAs nanocrystals (NCs) rely on pyrophoric, toxic, and not readily available tris-trimethylsilyl (or tris-trimethylgermil) arsine precursors. Less toxic and commercially available chemicals, such as tris(dimethylamino)arsine, have recently emerged as alternative As precursors. Nevertheless, InAs NCs made with such compounds need to be further optimized in terms of size distribution and optical properties in order to meet the standard reached with tris-trimethylsilyl arsine.
View Article and Find Full Text PDFSimultaneously achieving both broad absorption and sharp emission in the near-infrared (NIR) is challenging. Coupling of an efficient absorber such as lead halide perovskites to lanthanide emissive species is a promising way to meet the demands for visible-to-NIR spectral conversion. However, lead-based perovskite sensitizers suffer from relatively narrow absorption in the visible range, poor stability, and toxicity.
View Article and Find Full Text PDFSolution processing of highly performing photonic crystals has been a towering ambition for making them technologically relevant in applications requiring mass and large-area production. It would indeed represent a paradigm changer for the fabrication of sensors and for light management nanostructures meant for photonics and advanced photocatalytic systems. On the other hand, solution-processed structures often suffer from low dielectric contrast and poor optical quality or require complex deposition procedures due to the intrinsic properties of components treatable from solution.
View Article and Find Full Text PDFThe solvent acidolysis crystallization technique is utilized to grow mixed dimethylammonium/methylammonium lead tribromide (DMA/MAPbBr ) crystals reaching the highest dimethylammonium incorporation of 44% while maintaining the 3D cubic perovskite phase. These mixed perovskite crystals show suppression of the orthorhombic phase and a lower tetragonal-to-cubic phase-transition temperature compared to MAPbBr . A distinct behavior is observed in the temperature-dependent photoluminescence properties of MAPbBr and mixed DMA/MAPbBr crystals due to the different organic cation dynamics governing the phase transition(s).
View Article and Find Full Text PDFWe report a one-step synthesis of halide perovskite nanocrystals embedded in amphiphilic polymer (poly(acrylic acid)--poly(styrene), PAA--PS) micelles, based on injecting a dimethylformamide solution of PAA--PS, PbBr, ABr (A = Cs, formamidinium, or both) and "additive" molecules in toluene. These bifunctional or trifunctional short chain organic molecules improve the nanocrystal-polymer compatibility, increasing the nanocrystal stability against polar solvents and high flux irradiation (the nanocrystals retain almost 80% of their photoluminescence after 1 h of 3.2 w/cm irradiation).
View Article and Find Full Text PDFLead-halide perovskite nanocrystals are a promising material in optical devices due to their high photoluminescence (PL) quantum yield, excellent color purity, and low stimulated emission threshold. However, one problem is the stability of the nanocrystal films under different environmental conditions and under high temperatures. The latter is particularly relevant for device fabrication if further processes that require elevated temperatures are needed after the deposition of the nanocrystal film.
View Article and Find Full Text PDF