Publications by authors named "Francesco Ciscato"

Background: Metabolic adaptations can sustain the pro-neoplastic functions exerted by macrophages in the tumor microenvironment. Malignant peripheral nerve sheath tumors (MPNSTs), aggressive and incurable sarcomas that develop either sporadically or in the context of the genetic syndrome Neurofibromatosis type 1, are highly infiltrated by macrophages, whose contribution to MPNST growth remains poorly characterized. Here, we analyze the role played by the molecular chaperone TRAP1, a regulator of mitochondrial metabolic pathways, in shaping the pro-tumoral activity of macrophages associated to MPNST cells.

View Article and Find Full Text PDF

Hereditary-Motor-Neuropathies (dHMNs) are clinically and genetically heterogeneous neurological disorders characterized by degeneration of peripheral motoneurons. We previously identified two sigma-1 receptor (Sigma-1R) variants (p.E138Q; p.

View Article and Find Full Text PDF

Cyclophilin (CyP) D is a regulator of the mitochondrial F-ATP synthase. Here we report the discovery of a form of CyPD lacking the first 10 (mouse) or 13 (human) N-terminal residues (ΔN-CyPD), a protein region with species-specific features. NMR studies on recombinant human full-length CyPD (FL-CyPD) and ΔN-CyPD form revealed that the N-terminus is highly flexible, in contrast with the rigid globular part.

View Article and Find Full Text PDF

The disruptive impact of the COVID-19 pandemic has led the scientific community to undertake an unprecedented effort to characterize viral infection mechanisms. Among these, interactions between the viral glycosylated Spike and the human receptors ACE2 and TMPRSS2 are key to allowing virus invasion. Here, we report and test a fully rational methodology to design molecules that are capable of perturbing the interactions between these critical players in SARS-CoV-2 pathogenicity.

View Article and Find Full Text PDF

Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are aggressive sarcomas that can arise both sporadically and in patients with the genetic syndrome Neurofibromatosis type 1 (NF1). Prognosis is dismal, as large dimensions, risk of relapse, and anatomical localization make surgery poorly effective, and no therapy is known. Hence, the identification of MPNST molecular features that could be hit in an efficient and selective way is mandatory to envision treatment options.

View Article and Find Full Text PDF

Binding of the mitochondrial chaperone TRAP1 to client proteins shapes bioenergetic and proteostatic adaptations of cells, but the panel of TRAP1 clients is only partially defined. Here we show that TRAP1 interacts with F-ATP synthase, the protein complex that provides most cellular ATP. TRAP1 competes with the peptidyl-prolyl cis-trans isomerase cyclophilin D (CyPD) for binding to the oligomycin sensitivity-conferring protein (OSCP) subunit of F-ATP synthase, increasing its catalytic activity and counteracting the inhibitory effect of CyPD.

View Article and Find Full Text PDF
Article Synopsis
  • * Increasing the expression of an alternative NADH dehydrogenase, NDI1, can improve the NAD/NADH balance, enhance SIRT3 activity, and reduce tumor formation in cells lacking neurofibromin.
  • * The research suggests that targeting mitochondrial metabolism, specifically by manipulating NAD levels and enhancing succinate dehydrogenase activity, may offer new treatment strategies for tumors associated with neurofibromin loss.
View Article and Find Full Text PDF

The crucial role of hexokinase 2 (HK2) in the metabolic rewiring of tumors is now well established, which makes it a suitable target for the design of novel therapies. However, hexokinase activity is central to glucose utilization in all tissues; thus, enzymatic inhibition of HK2 can induce severe adverse effects. In an effort to find a selective anti-neoplastic strategy, we exploited an alternative approach based on HK2 detachment from its location on the outer mitochondrial membrane.

View Article and Find Full Text PDF

F-ATP synthase is a leading candidate as the mitochondrial permeability transition pore (PTP) but the mechanism(s) leading to channel formation remain undefined. Here, to shed light on the structural requirements for PTP formation, we test cells ablated for g, OSCP and b subunits, and ρ cells lacking subunits a and A6L. Δg cells (that also lack subunit e) do not show PTP channel opening in intact cells or patch-clamped mitoplasts unless atractylate is added.

View Article and Find Full Text PDF

Hexokinases are a family of ubiquitous exose-phosphorylating enzymes that prime glucose for intracellular utilization. Hexokinase 2 (HK2) is the most active isozyme of the family, mainly expressed in insulin-sensitive tissues. HK2 induction in most neoplastic cells contributes to their metabolic rewiring towards aerobic glycolysis, and its genetic ablation inhibits malignant growth in mouse models.

View Article and Find Full Text PDF

Cancer cells undergo changes in metabolic and survival pathways that increase their malignancy. Isoform 2 of the glycolytic enzyme hexokinase (HK2) enhances both glucose metabolism and resistance to death stimuli in many neoplastic cell types. Here, we observe that HK2 locates at mitochondria-endoplasmic reticulum (ER) contact sites called MAMs (mitochondria-associated membranes).

View Article and Find Full Text PDF

Mitochondria are dynamic organelles that exchange a multiplicity of signals with other cell compartments, in order to finely adjust key biological routines to the fluctuating metabolic needs of the cell. During neoplastic transformation, cells must provide an adequate supply of the anabolic building blocks required to meet a relentless proliferation pressure. This can occur in conditions of inconstant blood perfusion leading to variations in oxygen and nutrient levels.

View Article and Find Full Text PDF

Aims: In hepatocellular carcinoma (HCC), the regulatory protease Dipeptidyl-peptidase IV (DPPIV/CD26), that possesses pro-apoptotic properties, has been found abnormally regulated. The protease inhibitor SerpinB3, exerting anti-apoptotic activity, has also been described to be upregulated, especially in HCCs with poor prognosis. The aim of this study was to investigate the possible relationship between these two molecules in HCC patients and in experimental models.

View Article and Find Full Text PDF

Mutations in neurofibromin, a Ras GTPase-activating protein, lead to the tumor predisposition syndrome neurofibromatosis type 1. Here, we report that cells lacking neurofibromin exhibit enhanced glycolysis and decreased respiration in a Ras/ERK-dependent way. In the mitochondrial matrix of neurofibromin-deficient cells, a fraction of active ERK1/2 associates with succinate dehydrogenase (SDH) and TRAP1, a chaperone that promotes the accumulation of the oncometabolite succinate by inhibiting SDH.

View Article and Find Full Text PDF

Transition metals offer many possibilities in developing potent chemotherapeutic agents. They are endowed with a variety of oxidation states, allowing for the selection of their coordination numbers and geometries via the choice of proper ligands, leading to the tuning of their final biological properties. We report here on the synthesis, physico-chemical characterization, and solution behavior of two gold(III) pyrrolidinedithiocarbamates (PDT), namely [Au(III)Br2(PDT)] and [Au(III)Cl2(PDT)].

View Article and Find Full Text PDF

SERPINB3 (SB3) is a serine protease inhibitor overexpressed in several malignancies of epithelial origin, including primary liver cancer, where it inhibits apoptosis through poorly defined mechanisms. In the present study we analyze the effect of SB3 on hepatoma cell death elicited by a panel of chemotherapeutic agents. We report that SB3 shields cells from the toxicity of drugs with a pro-oxidant action such as doxorubicin, cisplatin and EM20-25.

View Article and Find Full Text PDF

Background: In the setting of liver injury hepatic progenitor cells are activated, counterbalancing the inhibited regenerative capacity of mature hepatocytes. Chronic activation of this compartment may give rise to a subset of liver tumours with poor prognosis. SerpinB3, a serpin over-expressed in injured liver and in primary liver cancer, has been shown to induce apoptosis resistance, epithelial to mesenchymal transition and to increase TGF-beta and Myc expression.

View Article and Find Full Text PDF