The uncoupling protein UCP2 is a mitochondrial carrier for which transport activity remains controversial. The physiological contexts in which UCP2 is expressed have led to the assumption that, like UCP1, it uncouples oxidative phosphorylation and thereby reduces the generation of reactive oxygen species. Other reports have involved UCP2 in the Warburg effect, and results showing that UCP2 catalyzes the export of matrix C4 metabolites to facilitate glutamine utilization suggest that the carrier could be involved in the metabolic adaptations required for cell proliferation.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
August 2022
Background And Aims: Hepatocellular carcinoma (HCC) is a multistep process whereby abnormally proliferating cancer cells undergo extensive metabolic reprogramming. Metabolic alterations in hepatocarcinogenesis depend on the activation of specific oncogenes, thus partially explaining HCC heterogeneity. c-Myc oncogene overexpression, frequently observed in human HCCs, leads to a metabolic rewiring toward a Warburg phenotype and production of lactate, resulting in the acidification of the extracellular space, favoring the emergence of an immune-permissive tumor microenvironment.
View Article and Find Full Text PDFHerein we examine the determinants of the allosteric inhibition of the mitochondrial chaperone TRAP1 by a small molecule ligand. The knowledge generated is harnessed into the design of novel derivatives with interesting biological properties. TRAP1 is a member of the Hsp90 family of proteins, which work through sequential steps of ATP processing coupled to client-protein remodeling.
View Article and Find Full Text PDFTrends Pharmacol Sci
July 2021
TRAP1, the mitochondrial isoform of heat shock protein (Hsp)90 chaperones, is a key regulator of metabolism and organelle homeostasis in diverse pathological states. While selective TRAP1 targeting is an attractive goal, classical active-site-directed strategies have proved difficult, due to high active site conservation among Hsp90 paralogs. Here, we discuss advances in developing TRAP1-directed strategies, from lead modification with mitochondria delivery groups to the computational discovery of allosteric sites and ligands.
View Article and Find Full Text PDFThe mitochondrial paralog of the Hsp90 chaperone family TRAP1 is often induced in tumors, but the mechanisms controlling its expression, as well as its physiological functions remain poorly understood. Here, we find that TRAP1 is highly expressed in the early stages of Zebrafish development, and its ablation delays embryogenesis while increasing mitochondrial respiration of fish larvae. TRAP1 expression is enhanced by hypoxic conditions both in developing embryos and in cancer models of Zebrafish and mammals.
View Article and Find Full Text PDFAllosteric molecules provide a powerful means to modulate protein function. However, the effect of such ligands on distal orthosteric sites cannot be easily described by classical docking methods. Here, we applied machine learning (ML) approaches to expose the links between local dynamic patterns and different degrees of allosteric inhibition of the ATPase function in the molecular chaperone TRAP1.
View Article and Find Full Text PDFMolecular chaperones have recently emerged as fundamental regulators of salient biological routines, including metabolic adaptations to environmental changes. Yet, many of the molecular mechanisms at the basis of their functions are still unknown or at least uncertain. This is in part due to the lack of chemical tools that can interact with the chaperones to induce measurable functional perturbations.
View Article and Find Full Text PDFTNF receptor-associated protein 1 (TRAP1), the mitochondrial paralog of the heat shock protein 90 (Hsp90) family of molecular chaperones, is required for neoplastic growth in several tumor cell models, where it inhibits succinate dehydrogenase (SDH) activity, thus favoring bioenergetic rewiring, maintenance of redox homeostasis, and orchestration of a hypoxia-inducible factor 1-alpha (HIF1α)-mediated pseudohypoxic program. Development of selective TRAP1 inhibitors is instrumental for targeted development of antineoplastic drugs, but it has been hampered up to now by the high degree of homology among catalytic pockets of Hsp90 family members. The vegetal derivative honokiol and its lipophilic bis-dichloroacetate ester, honokiol DCA (HDCA), are small-molecule compounds with antineoplastic activity.
View Article and Find Full Text PDFTRAP1 is the mitochondrial paralog of the heat shock protein 90 (HSP90) chaperone family. Its activity as an energy metabolism regulator has important implications in cancer, neurodegeneration, and ischemia. Selective inhibitors of TRAP1 could inform on its mechanisms of action and set the stage for targeted drug development, but their identification was hampered by the similarity among active sites in HSP90 homologs.
View Article and Find Full Text PDFBackground & Aims: Only limited therapeutic options are currently available for hepatocellular carcinoma (HCC), making the development of effective alternatives essential. Based on the recent finding that systemic or local hypothyroidism is associated with HCC development in humans and rodents, we investigated whether the thyroid hormone triiodothyronine (T3) could inhibit the progression of HCCs.
Methods: Different rat and mouse models of hepatocarcinogenesis were investigated.
Cochrane Database Syst Rev
November 2019
Mitochondria are dynamic organelles that exchange a multiplicity of signals with other cell compartments, in order to finely adjust key biological routines to the fluctuating metabolic needs of the cell. During neoplastic transformation, cells must provide an adequate supply of the anabolic building blocks required to meet a relentless proliferation pressure. This can occur in conditions of inconstant blood perfusion leading to variations in oxygen and nutrient levels.
View Article and Find Full Text PDFAllosteric compounds that stimulate Hsp90 adenosine triphosphatase (ATPase) activity were rationally designed, showing anticancer potencies in the low micromolar to nanomolar range. In parallel, the mode of action of these compounds was clarified and a quantitative model that links the dynamic ligand-protein cross-talk to observed cellular and in vitro activities was developed. The results support the potential of using dynamics-based approaches to develop original mechanism-based cancer therapeutics.
View Article and Find Full Text PDF3-Bromopyruvate (3-BrP) is an alkylating, energy-depleting drug that is of interest in antitumor therapies, although the mechanisms underlying its cytotoxicity are ill-defined. We show here that 3-BrP causes concentration-dependent cell death of HL60 and other human myeloid leukemia cells, inducing both apoptosis and necrosis at 20-30 μM and a pure necrotic response at 60 μM. Low concentrations of 3-BrP (10-20 μM) brought about a rapid inhibition of glycolysis, which at higher concentrations was followed by the inhibition of mitochondrial respiration.
View Article and Find Full Text PDFBackground: Insulin resistance and oxidative stress are major pathogenic mechanisms leading to chronic liver diseases in diabetic subjects. The gerbil Psammomys obesus is a unique model of nutritional diabetes resembling the disease in humans. This study investigated whether the natural ingredient silibinin, known as hepatoprotective, could decrease oxidative stress and reduce liver damage in obese gerbils.
View Article and Find Full Text PDFBackground: Uncoupling protein 2 (UCP2) is a mitochondrial transporter that has been shown to lower the production of reactive oxygen species (ROS). Intracellular pathogens such as Leishmania upregulate UCP2 and thereby suppress ROS production in infected host tissues, allowing the multiplication of parasites within murine phagocytes. This makes host UCP2 and ROS production potential targets in the development of antileishmanial therapies.
View Article and Find Full Text PDFMitochondrial dysfunction is considered to be a pivotal component of insulin resistance and associated metabolic diseases. Psammomys obesus is a relevant model of nutritional diabetes since these adult animals exhibit a state of insulin resistance when fed a standard laboratory chow, hypercaloric for them as compared to their natural food. In this context, alterations in bioenergetics were studied.
View Article and Find Full Text PDF