Neurodegenerative diseases currently represent one of the most serious health pitfalls for the world population. Considering their multifactorial nature, research has focused on the study of small molecules able to simultaneously tackle different targets involved in their onset and progression. In this paper, two sets of acylaminopyrazole-based compounds were designed to exploit the aminopyrazole core as a privileged structure properly decorated with an acyl moiety and a further amide function, connected with a proper spacer.
View Article and Find Full Text PDFAiming at developing a new class of quaternary pyridinium salts, the lead compound 1, characterized by a pyridine-3-yl chalcone framework, was rationally modified by inserting alkyl functions varying from 6 to 18 carbon units. Among the set, some valuable lead compounds were identified. Derivatives 4-6 were primarily active against Staphylococcus aureus and Candida albicans, respectively (MIC = 1.
View Article and Find Full Text PDFSimultaneous modulation of multifaceted toxicity arising from neuroinflammation, oxidative stress, and mitochondrial dysfunction represents a valuable therapeutic strategy to tackle Alzheimer's disease. Among the significant hallmarks of the disorder, Aβ protein and its aggregation products are well-recognised triggers of the neurotoxic cascade. In this study, by tailored modification of the curcumin-based lead compound 1, we aimed at developing a small library of hybrid compounds targeting Aβ protein oligomerisation and the consequent neurotoxic events.
View Article and Find Full Text PDFFuture Med Chem
December 2022
: Malaria represents the major parasitic disease in tropical regions, and the development of new potent drugs is of pivotal importance. In this study, a series of hybrid molecules were designed by linking the 7-chloroquinoline core of chloroquine to different fluorinated flavonoid-related scaffolds. : Compounds were prepared by exploiting the click chemistry approach, allowing the introduction of a 1,2,3-triazole, a privileged structural motif in antiparasitic dug discovery.
View Article and Find Full Text PDFTrypanothione reductase (TR) is a key factor in the redox homeostasis of trypanosomatid parasites, critical for survival in the hostile oxidative environment generated by the host to fight infection. TR is considered an attractive target for the development of new trypanocidal agents as it is essential for parasite survival but has no close homolog in humans. However, the high efficiency and turnover of TR challenging targets since only potent inhibitors, with nanomolar IC50, can significantly affect parasite redox state and viability.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive neurodegenerative disorder that is not restricted to the neuronal compartment but includes important interactions with immune cells, including microglia. Protein aggregates, common pathological hallmarks of AD, bind to pattern recognition receptors on microglia and trigger an inflammatory response, which contributes to disease progression and severity. In this context, curcumin is emerging as a potential drug candidate able to affect multiple key pathways implicated in AD, including neuroinflammation.
View Article and Find Full Text PDFPharmacological treatment of complex pathologies, such as neurodegenerative diseases still represents a major challenge, due to the networked pathways involved in their onset and progression that may require equally complex therapeutic approaches. Polypharmacology, based on the simultaneous modulation of multiple targets involved in the disease, may offer the potential to increase effectiveness and reduce the drawbacks related to the use of drug combinations. Clearly, this approach requires both the knowledge of the systems responsible for disease development and the discovery of new attractive targets to be exploited to design a multitarget drug.
View Article and Find Full Text PDFThe participation of reactants undergoing a polarity inversion along a multicomponent reaction allows the continuation of the transformation with productive domino processes. Thus, indole aldehydes in Groebke-Blackburn-Bienaymé reactions lead to an initial adduct which spontaneously triggers a series of events leading to the discovery of novel reaction pathways together with direct access to a variety of linked, fused, and bridged polyheterocyclic scaffolds. Indole 3- and 4-carbaldehydes with suitable isocyanides and aminoazines afford fused adducts through oxidative Pictet-Spengler processes, whereas indole 2-carbaldehyde yields linked indolocarbazoles under mild conditions, and a bridged macrocycle at high temperature.
View Article and Find Full Text PDFCommon copathogenic factors, including oxidative stress and neuroinflammation, are found to play a vital role in the development of neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). Nowadays, owing to the multifactorial character of the diseases, no effective therapies are available, thus underlying the need for new strategies. Overexpression of the enzyme GSK-3β and downregulation of the Nrf2/ARE pathway are responsible for a decrease in antioxidant defense effects.
View Article and Find Full Text PDFThe burden of neoplastic diseases is widely recognized as a severe cause of mortality. The clinical inadequacy of most anticancer therapeutics urgently prompted intense drug discovery efforts toward the identification of new chemical entities endowed with a potent and safe antitumor profile. In this scenario, targeting cancer cells apoptosis machinery has emerged as a relevant strategy, useful for tackling the emergence of drug resistance.
View Article and Find Full Text PDFDue to the complex and multifactorial nature of bipolar disorder (BD), single-target drugs have traditionally provided limited relief with no disease-modifying effects. In line with the polypharmacology paradigm, we attempted to overcome these limitations by devising two series of multitarget-directed ligands endowed with both a partial agonist profile at dopamine receptor D3 (D3R) and inhibitory activity against glycogen synthase kinase 3 beta (GSK-3β). These are two structurally unrelated targets that play independent, yet connected, roles in cognition and mood regulation.
View Article and Find Full Text PDFBeilstein J Org Chem
February 2019
Multiple multicomponent reactions reach an unparalleled level of connectivity, leading to highly complex adducts. Usually, only one type of transformation involving the same set of reactants takes place. However, in some occasions this is not the case.
View Article and Find Full Text PDFBreast cancer is the most diagnosed type of cancer among women for which an exhaustive cure has not been discovered yet. Nowadays, tamoxifen still represents the gold standard for breast cancer therapy; it acts on both estrogen receptor-positive and estrogen receptor-negative breast cancers. Unfortunately, its toxicity and the related chemoresistance undermine its antitumor potential.
View Article and Find Full Text PDFACS Chem Neurosci
March 2019
Alzheimer's disease is likely to be caused by copathogenic factors including aggregation of Aβ peptides into oligomers and fibrils, neuroinflammation, and oxidative stress. To date, no effective treatments are available, and because of the multifactorial nature of the disease, it emerges the need to act on different and simultaneous fronts. Despite the multiple biological activities ascribed to curcumin as neuroprotector, its poor bioavailability and toxicity limit the success in clinical outcomes.
View Article and Find Full Text PDFChalcones have shown a broad spectrum of biological activities with clinical potential against various diseases. The biological activities are mainly attributed to the presence in the chalcones of the α,β-unsaturated carbonyl system, perceived as a potential Michael acceptor. Chalcones could activate the Kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway through a Michael addition reaction with the cysteines of Keap1, which acts as a redox sensor and negative regulator of Nrf2.
View Article and Find Full Text PDF