Publications by authors named "Francesca Rapino"

Pyruvate metabolism defects lead to severe neuropathies such as the Leigh syndrome (LS) but the molecular mechanisms underlying neuronal cell death remain poorly understood. Here, we unravel a connection between pyruvate metabolism and the regulation of the epitranscriptome that plays an essential role during brain development. Using genetically engineered mouse model and primary neuronal cells, we identify the transcription factor E4F1 as a key coordinator of AcetylCoenzyme A (AcCoA) production by the pyruvate dehydrogenase complex (PDC) and its utilization as an essential co-factor by the Elongator complex to acetylate tRNAs at the wobble position uridine 34 (U).

View Article and Find Full Text PDF

The kinetics of the protein elongation cycle by the ribosome depends on intertwined factors. One of these factors is the electrostatic interaction of the nascent protein with the ribosome exit tunnel. In this computational biology theoretical study, we focus on the rate of the peptide bond formation and its dependence on the ribosome exit tunnel electrostatic potential profile.

View Article and Find Full Text PDF
Article Synopsis
  • Transfer RNA (tRNA) dynamics play a significant role in cancer by influencing how messenger RNA (mRNA) translates into proteins, specifically through aminoacyl-tRNA synthetases that can either encourage or inhibit tumor growth.
  • Research indicates that valine aminoacyl-tRNA synthetase (VARS) is crucial for the changes in protein translation related to resistance against MAPK therapy in melanoma patients, as there is an increased use of valine in their proteomes.
  • Additionally, reducing VARS levels can make MAPK-resistant melanoma cells more sensitive to treatment, as VARS is linked to the translation of key mRNAs that support cell survival via fatty acid oxidation.
View Article and Find Full Text PDF

Notch receptor activation is regulated by the intramembrane protease γ-secretase, which cleaves and liberates the Notch intracellular domain (Nicd) that regulates gene transcription. While γ-secretase cleavage is necessary, we demonstrate it is insufficient for Notch activation and requires vesicular trafficking. Here, we report Divalent metal transporter 1 (Dmt1, Slc11A2) as a novel and essential regulator of Notch signalling.

View Article and Find Full Text PDF

The central function of the large subunit of the ribosome is to catalyze peptide bond formation. This biochemical reaction is conducted at the peptidyl transferase center (PTC). Experimental evidence shows that the catalytic activity is affected by the electrostatic environment around the peptidyl transferase center.

View Article and Find Full Text PDF

Emerging evidence of species divergent features of astrocytes coupled with the relative inaccessibility of human brain tissue underscore the utility of human pluripotent stem cell (hPSC) technologies for the generation and study of human astrocytes. However, existing approaches for hPSC-astrocyte generation are typically lengthy or require intermediate purification steps. Here, we establish a rapid and highly scalable method for generating functional human induced astrocytes (hiAs).

View Article and Find Full Text PDF

The genetic code is textbook scientific knowledge that was soundly established without resorting to Artificial Intelligence (AI). The goal of our study was to check whether a neural network could re-discover, on its own, the mapping links between codons and amino acids and build the complete deciphering dictionary upon presentation of transcripts proteins data training pairs. We compared different Deep Learning neural network architectures and estimated quantitatively the size of the required human transcriptomic training set to achieve the best possible accuracy in the codon-to-amino-acid mapping.

View Article and Find Full Text PDF

In the brain, the complement system plays a crucial role in the immune response and in synaptic elimination during normal development and disease. Here, we sought to identify pathways that modulate the production of complement component 4 (C4), recently associated with an increased risk of schizophrenia. To design a disease-relevant assay, we first developed a rapid and robust 3D protocol capable of producing large numbers of astrocytes from pluripotent cells.

View Article and Find Full Text PDF

The impact of ribosome exit tunnel electrostatics on the protein elongation rate or on forces acting upon the nascent polypeptide chain are currently not fully elucidated. In the past, researchers have measured the electrostatic potential inside the ribosome polypeptide exit tunnel at a limited number of spatial points, at least in rabbit reticulocytes. Here we present a basic electrostatic model of the exit tunnel of the ribosome, providing a quantitative physical description of the tunnel interaction with the nascent proteins at all centro-axial points inside the tunnel.

View Article and Find Full Text PDF

Regulation of mRNA translation elongation impacts nascent protein synthesis and integrity and plays a critical role in disease establishment. Here, we investigate features linking regulation of codon-dependent translation elongation to protein expression and homeostasis. Using knockdown models of enzymes that catalyze the mcms wobble uridine tRNA modification (U-enzymes), we show that gene codon content is necessary but not sufficient to predict protein fate.

View Article and Find Full Text PDF

The hematopoietic system is highly sensitive to perturbations in the translational machinery, of which an emerging level of regulation lies in the epitranscriptomic modification of transfer RNAs (tRNAs). Here, we interrogate the role of tRNA anticodon modifications in hematopoiesis by using mouse models of conditional inactivation of Elp3, the catalytic subunit of Elongator that modifies wobble uridine in specific tRNAs. Loss of Elp3 causes bone marrow failure by inducing death in committing progenitors and compromises the grafting activity of hematopoietic stem cells.

View Article and Find Full Text PDF

Estrogen receptor alpha (ERα) activity is associated with increased cancer cell proliferation. Studies aiming to understand the impact of ERα on cancer-associated phenotypes have largely been limited to its transcriptional activity. Herein, we demonstrate that ERα coordinates its transcriptional output with selective modulation of mRNA translation.

View Article and Find Full Text PDF

The enzymes catalysing the modification of the wobble uridine (U) of tRNAs (U-enzymes) play an important role in tumor development. We have recently demonstrated that the U-enzymes are crucial in the survival of glycolytic melanoma cultures through a codon-specific regulation of HIF1α mRNA translation. Moreover, depletion of U-enzymes resensitizes resistant melanoma to targeted therapy.

View Article and Find Full Text PDF

Reprogramming of mRNA translation has a key role in cancer development and drug resistance . However, the molecular mechanisms that are involved in this process remain poorly understood. Wobble tRNA modifications are required for specific codon decoding during translation.

View Article and Find Full Text PDF

Monocytes and macrophages play a pivotal role in the induction and shaping of immune responses. Expressing a broad array of pattern recognition receptors (PRRs), monocytes and macrophages constitute an integral component of the innate branch of the immune system. Traditionally, the majority of innate immune sensing and signaling pathways have been studied in macrophages of the murine system.

View Article and Find Full Text PDF

Translational control of protein synthesis supports tumor development and progression to metastasis. Wobble tRNA modifications are required during translation elongation and sustain proteome homeostasis. Recent work has highlighted the surprising upregulation of the wobble uridine 34 (U34) tRNA cascade in cancer, which underlies the specific requirement for this pathway in tumor development.

View Article and Find Full Text PDF

Quantitative and qualitative changes in mRNA translation occur in tumor cells and support cancer progression and metastasis. Posttranscriptional modifications of transfer RNAs (tRNAs) at the wobble uridine 34 (U34) base are highly conserved and contribute to translation fidelity. Here, we show that ELP3 and CTU1/2, partner enzymes in U34 mcms-tRNA modification, are up-regulated in human breast cancers and sustain metastasis.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) offer a renewable source of cells that can be expanded indefinitely and differentiated into virtually any type of cell in the human body, including neurons. This opens up unprecedented possibilities to study neuronal cell and developmental biology and cellular pathology of the nervous system, provides a platform for the screening of chemical libraries that affect these processes, and offers a potential source of transplantable cells for regenerative approaches to neurological disease. However, defining protocols that permit a large number and high yield of neurons has proved difficult.

View Article and Find Full Text PDF

Interleukin-1β (IL-1β) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1β independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system.

View Article and Find Full Text PDF

Tumor initiation in the intestine can rapidly occur from Lgr5(+) crypt columnar stem cells. Dclk1 is a marker of differentiated Tuft cells and, when coexpressed with Lgr5, also marks intestinal cancer stem cells. Here, we show that Elp3, the catalytic subunit of the Elongator complex, is required for Wnt-driven intestinal tumor initiation and radiation-induced regeneration by maintaining a subpool of Lgr5(+)/Dclk1(+)/Sox9(+) cells.

View Article and Find Full Text PDF

Earlier work demonstrated that the transcription factor C/EBPα can convert immature and mature murine B lineage cells into functional macrophages. Testing >20 human lymphoma and leukemia B cell lines, we found that most can be transdifferentiated at least partially into macrophage-like cells, provided that C/EBPα is expressed at sufficiently high levels. A tamoxifen-inducible subclone of the Seraphina Burkitt lymphoma line, expressing C/EBPαER, could be efficiently converted into phagocytic and quiescent cells with a transcriptome resembling normal macrophages.

View Article and Find Full Text PDF

Here we describe a lineage reprogramming system consisting of a B cell line with an estradiol-inducible form of C/EBPalpha where cells can be converted into macrophage-like cells at 100% efficiency within 2 to 3 days. The reprogrammed cells are larger, contain altered organelle and cytoskeletal structures, are phagocytic, and exhibit an inflammatory response. Time-lapse experiments showed that the cells acquire a macrophage morphology and increased migratory activity as early as 10 hr.

View Article and Find Full Text PDF