Publications by authors named "Florian Siegerist"

Background: Podocyte dysfunction is central to various glomerular diseases, necessitating reliable biomarkers for early detection and diagnosis. This study investigates the regulatory mechanisms of membrane-associated guanylate kinase inverted 2 (MAGI2) and its potential as a biomarker for podocytopathies.

Methods: Using fluorescence confocal laser scanning microscopy and super-resolution structured illumination microscopy of immunostained tissue sections of murine, human, and zebrafish tissue we investigated the subcellular location of MAGI2 in the kidney.

View Article and Find Full Text PDF

For decades, electron microscopy has been the primary method to visualize ultrastructural details of the kidney, including podocyte foot processes and the slit diaphragm. Despite its status as the gold standard, electron microscopy has significant limitations: it requires laborious sample preparation, works only with very small samples, is mainly qualitative, and is prone to misinterpretation because of section angle bias. In addition, combining imaging and protein staining with antibodies poses a challenge, limiting electron microscopy's integration into routine research and diagnostic workflows.

View Article and Find Full Text PDF

Background: Cystinosis is a rare, incurable lysosomal storage disease caused by mutations in the CTNS gene encoding the cystine transporter cystinosin, which leads to lysosomal cystine accumulation in all cells of the body. Patients with cystinosis display signs of podocyte damage characterized by extensive loss of podocytes into the urine at early disease stages, glomerular proteinuria, and the development of focal segmental glomerulosclerosis (FSGS) lesions. Although standard treatment with cysteamine decreases cellular cystine levels, it neither reverses glomerular injury nor prevents the loss of podocytes.

View Article and Find Full Text PDF

The tricellular tight junctions are crucial for the regulation of paracellular flux at tricellular junctions, where tricellulin (MARVELD2) and angulins (ILDR1, ILDR2, or LSR) are localized. The role of ILDR2 in podocytes, specialized epithelial cells in the kidney, is still unknown. We investigated the role of ILDR2 in glomeruli and its influence on blood filtration.

View Article and Find Full Text PDF

Deep insights into the complex cellular and molecular changes occurring during (patho-)physiological conditions are essential for understanding the interactions and regulation of proteins. This understanding is crucial for research and diagnostics. However, the effectiveness of conventional immunofluorescence and light microscope, tools for visualizing the spatial distribution of cells or proteins, are limited both in resolution and multiplexity in complex tissues.

View Article and Find Full Text PDF

Identifying effective drugs for focal segmental glomerulosclerosis (FSGS) treatment holds significant importance. Our high-content drug screening on zebrafish larvae relies on nitroreductase/metronidazole (NTR/MTZ)-induced podocyte ablation to generate FSGS-like injury. A crucial factor for successful drug screenings is minimizing variability in injury induction.

View Article and Find Full Text PDF

Podocyte detachment due to mechanical stress is a common issue in hypertension-induced kidney disease. This study highlights the role of zyxin for podocyte stability and function. We have found that zyxin is significantly up-regulated in podocytes after mechanical stretch and relocalizes from focal adhesions to actin filaments.

View Article and Find Full Text PDF

Background: Glucocorticoids are the treatment of choice for proteinuric patients with minimal change disease (MCD) and primary focal segmental glomerulosclerosis (FSGS). Immunosuppressive as well as direct effects on podocytes are believed to mediate their actions. In this study, we analyzed the anti-proteinuric effects of inhibition of the glucocorticoid receptor (GR) in glomerular epithelial cells, including podocytes.

View Article and Find Full Text PDF

Messenger RNA (mRNA) therapies are emerging in different disease areas, but have not yet reached the kidney field. Our aim was to study the feasibility to treat the genetic defect in cystinosis using synthetic mRNA in cell models and ctns zebrafish embryos. Cystinosis is a prototype lysosomal storage disorder caused by mutations in the CTNS gene, encoding the lysosomal cystine-H symporter cystinosin, and leading to cystine accumulation in all cells of the body.

View Article and Find Full Text PDF

Background: FSGS affects the complex three-dimensional morphology of podocytes, resulting in loss of filtration barrier function and the development of sclerotic lesions. Therapies to treat FSGS are limited, and podocyte-specific drugs are unavailable. To address the need for treatments to delay or stop FSGS progression, researchers are exploring the repurposing of drugs that have been approved by the US Food and Drug Administration (FDA) for other purposes.

View Article and Find Full Text PDF

Scribble complex proteins can influence cell fate decisions and self-renewal capacity of hematopoietic cells. While specific cellular functions of Scribble complex members are conserved in mammalian hematopoiesis, they appear to be highly context dependent. Using CRISPR/Cas9-based genetic screening, we have identified Scribble complex-related liabilities in AML including LLGL1.

View Article and Find Full Text PDF
Article Synopsis
  • Elevated levels of soluble urokinase receptor (suPAR) and proteinuria are common in patients with severe COVID-19, indicating a potential viral response affecting kidney function.
  • Research shows that SARS-CoV-2 infection increases suPAR levels and leads to kidney damage (glomerulopathy) in animal models, and this response can be mitigated through vaccination or targeted antibodies.
  • In a study of nearly 2000 COVID-19 patients, the relationship between high suPAR levels and proteinuria was strong in non-Omicron variants but not with Omicron, highlighting differences in virus interactions with kidney cells.*
View Article and Find Full Text PDF

SLC35F1 is a member of the sugar-like carrier (SLC) superfamily that is expressed in the mammalian brain. Malfunction of SLC35F1 in humans is associated with neurodevelopmental disorders. To get insight into the possible roles of Slc35f1 in the brain, we generated Slc35f1-deficient mice.

View Article and Find Full Text PDF

Background: For decades, knowledge about glomerular (patho)physiology has been tightly linked with advances in microscopic imaging technology. For example, the invention of electron microscopy was required to hypothesize about the mode of glomerular filtration barrier function.

Summary: Super-resolution techniques, defined as fluorescence microscopy approaches that surpass the optical resolution limit of around 200 nm, have been made available to the scientific community.

View Article and Find Full Text PDF

The renal renin-angiotensin system (RAS) is involved in the development of chronic kidney disease. Here, we investigated whether mice with reduced renal angiotensin I-converting enzyme (ACE) are protected against aristolochic acid nephropathy (AAN). To further elucidate potential molecular mechanisms, we assessed the renal abundances of several major RAS components.

View Article and Find Full Text PDF

Increasing the information depth of single kidney biopsies can improve diagnostic precision, personalized medicine and accelerate basic kidney research. Until now, information on mRNA abundance and morphologic analysis has been obtained from different samples, missing out on the spatial context and single-cell correlation of findings. Herein, we present scoMorphoFISH, a modular toolbox to obtain spatial single-cell single-mRNA expression data from routinely generated kidney biopsies.

View Article and Find Full Text PDF

Vaccine-induced immune thrombotic thrombocytopenia (VITT; synonym, thrombosis with thrombocytopenia syndrome, is associated with high-titer immunoglobulin G antibodies directed against platelet factor 4 (PF4). These antibodies activate platelets via platelet FcγIIa receptors, with platelet activation greatly enhanced by PF4. Here we summarize the current concepts in the pathogenesis of VITT.

View Article and Find Full Text PDF

Vector-based SARS-CoV-2 vaccines have been associated with vaccine- induced thrombosis with thrombocytopenia syndrome (VITT/TTS), but the causative factors are still unresolved. We comprehensively analyzed the ChAdOx1 nCoV-19 (AstraZeneca) and Ad26.COV2.

View Article and Find Full Text PDF

The majority of kidney diseases arise from the loss of podocytes and from morphological changes of their highly complex foot process architecture, which inevitably leads to a reduced kidney filtration and total loss of kidney function. It could have been shown that microRNAs (miRs) play a pivotal role in the pathogenesis of podocyte-associated kidney diseases. Due to their fully functioning pronephric kidney, larval zebrafish have become a popular vertebrate model, to study kidney diseases in vivo.

View Article and Find Full Text PDF

SARS-CoV-2 vaccine ChAdOx1 nCoV-19 (AstraZeneca) causes a thromboembolic complication termed vaccine-induced immune thrombotic thrombocytopenia (VITT). Using biophysical techniques, mouse models, and analysis of VITT patient samples, we identified determinants of this vaccine-induced adverse reaction. Super-resolution microscopy visualized vaccine components forming antigenic complexes with platelet factor 4 (PF4) on platelet surfaces to which anti-PF4 antibodies obtained from VITT patients bound.

View Article and Find Full Text PDF

Under healthy conditions, foot processes of neighbouring podocytes are interdigitating and connected by an electron-dense slit diaphragm. Besides slit diaphragm proteins, typical adherens junction proteins are also found to be expressed at this cell-cell junction. It is therefore considered as a highly specialized type of adherens junction.

View Article and Find Full Text PDF

Background/aims: Podocyte differentiation is essential for proper blood filtration in the kidney. It is well known that transcription factors play an essential role to maintain the differentiation of podocytes. The present study is focused on the basic helix-loop-helix (bHLH) transcription factor Tcf21 (Pod1) which is essential for the development of podocytes in vivo.

View Article and Find Full Text PDF

Focal and segmental glomerulosclerosis (FSGS) is a histological pattern frequently found in patients with nephrotic syndrome that often progress to end-stage kidney disease. The initial step in development of this histologically defined entity is injury and ultimately depletion of podocytes, highly arborized interdigitating cells on the glomerular capillaries with important function for the glomerular filtration barrier. Since there are still no causal therapeutic options, animal models are needed to develop new treatment strategies.

View Article and Find Full Text PDF

The local anesthetic lidocaine, which has been used extensively during liposuction, has been reported to have cytotoxic effects and therefore would be unsuitable for use in autologous lipotransfer. We evaluated the effect of lidocaine on the distribution, number, and viability of adipose-derived stem cells (ASCs), preadipocytes, mature adipocytes, and leukocytes in the fatty and fluid portion of the lipoaspirate using antibody staining and flow cytometry analyses. Adipose tissue was harvested from 11 female patients who underwent liposuction.

View Article and Find Full Text PDF

Podocytes, highly specialized epithelial cells, build the outer part of the kidney filtration barrier and withstand high mechanical forces through a complex network of cellular protrusions. Here, we show that Arp2/3-dependent actin polymerization controls actomyosin contractility and focal adhesion maturation of podocyte protrusions and thereby regulates formation, maintenance, and capacity to adapt to mechanical requirements of the filtration barrier. We find that N-WASP-Arp2/3 define the development of complex arborized podocyte protrusions in vitro and in vivo.

View Article and Find Full Text PDF