Publications by authors named "Filomena A Pettolino"

Cultivated cotton plants are the world's largest source of natural fibre, where yield and quality are key traits for this renewable and biodegradable commodity. The cotton genome contains ~80K protein-coding genes, making precision breeding of complex traits a challenge. This study tested approaches to improving the genomic prediction (GP) accuracy of valuable cotton fibre traits to help accelerate precision breeding.

View Article and Find Full Text PDF

Characterisation and genetic mapping of a key gene defining root morphology in bread wheat. Root morphology is central to plants for the efficient uptake up of soil water and mineral nutrients. Here we describe a conditional mutant of hexaploid wheat (Triticum aestivum L.

View Article and Find Full Text PDF

The Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program is the sole breeding effort for cotton in Australia, developing high performing cultivars for the local industry which is worth∼AU$3 billion per annum. The program is supported by Cotton Breeding Australia, a Joint Venture between CSIRO and the program's commercial partner, Cotton Seed Distributors Ltd. (CSD).

View Article and Find Full Text PDF

Background: Knowledge of plant secondary cell wall (SCW) regulation and deposition is mainly based on the Arabidopsis model of a 'typical' lignocellulosic SCW. However, SCWs in other plants can vary from this. The SCW of mature cotton seed fibres is highly cellulosic and lacks lignification whereas xylem SCWs are lignocellulosic.

View Article and Find Full Text PDF

The pathogenic yeast Candida albicans escapes macrophages by triggering NLRP3 inflammasome-dependent host cell death (pyroptosis). Pyroptosis is inflammatory and must be tightly regulated by host and microbe, but the mechanism is incompletely defined. We characterized the C.

View Article and Find Full Text PDF

Cotton provides us the most important natural fibre. High fibre quality is the major goal of cotton breeding, and introducing genes conferring longer, finer and stronger fibre from Gossypium barbadense to Gossypium hirsutum is an important breeding strategy. We previously analysed the G.

View Article and Find Full Text PDF

In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC).

View Article and Find Full Text PDF

Plant cell walls are complex matrixes of heterogeneous glycans which play an important role in the physiology and development of plants and provide the raw materials for human societies (e.g. wood, paper, textile and biofuel industries)(1,2).

View Article and Find Full Text PDF

The plant cell wall is a chemically complex structure composed mostly of polysaccharides. Detailed analyses of these cell wall polysaccharides are essential for our understanding of plant development and for our use of plant biomass (largely wall material) in the food, agriculture, fabric, timber, biofuel and biocomposite industries. We present analytical techniques not only to define the fine chemical structures of individual cell wall polysaccharides but also to estimate the overall polysaccharide composition of cell wall preparations.

View Article and Find Full Text PDF

Immunolabeling, combined with chemical analyses and transcript profiling, have provided a comprehensive temporal and spatial picture of the deposition and modification of cell wall polysaccharides during barley (Hordeum vulgare) grain development, from endosperm cellularization at 3 d after pollination (DAP) through differentiation to the mature grain at 38 DAP. (1→3)-β-D-Glucan appears transiently during cellularization but reappears in patches in the subaleurone cell walls around 20 DAP. (1→3, 1→4)-β-Glucan, the most abundant polysaccharide of the mature barley grain, accumulates throughout development.

View Article and Find Full Text PDF

An exo-β-(1→3)-D-galactanase (SGalase1) that specifically cleaves the β-(1→3)-D-galactan backbone of arabinogalactan-proteins (AGPs) was isolated from culture filtrates of a soil Streptomyces sp. Internal peptide sequence information was used to clone and recombinantly express the gene in E. coli.

View Article and Find Full Text PDF

Numerous evolutionary innovations were required to enable freshwater green algae to colonize terrestrial habitats and thereby initiate the evolution of land plants (embryophytes). These adaptations probably included changes in cell-wall composition and architecture that were to become essential for embryophyte development and radiation. However, it is not known to what extent the polymers that are characteristic of embryophyte cell walls, including pectins, hemicelluloses, glycoproteins and lignin, evolved in response to the demands of the terrestrial environment or whether they pre-existed in their algal ancestors.

View Article and Find Full Text PDF

Changes in cell wall polysaccharides, transcript abundance, metabolite profiles, and hormone concentrations were monitored in the upper and lower regions of maize (Zea mays) pulvini in response to gravistimulation, during which maize plants placed in a horizontal position returned to the vertical orientation. Heteroxylan levels increased in the lower regions of the pulvini, together with lignin, but xyloglucans and heteromannan contents decreased. The degree of substitution of heteroxylan with arabinofuranosyl residues decreased in the lower pulvini, which exhibited increased mechanical strength as the plants returned to the vertical position.

View Article and Find Full Text PDF

Exposure of the mature Arabidopsis (Arabidopsis thaliana) seed to water results in the rapid release of pectinaceous mucilage from the outer cells of the testa. Once released, mucilage completely envelops the seed in a gel-like capsule. The physical force required to rupture the outer cell wall of the testa comes from the swelling of the mucilage as it expands rapidly following hydration.

View Article and Find Full Text PDF

The cell wall is essential for viability of fungi and is an effective drug target in pathogens such as Candida albicans. The contribution of post-transcriptional gene regulators to cell wall integrity in C. albicans is unknown.

View Article and Find Full Text PDF

Arabinogalactan-proteins (AGPs), found in the culture medium of suspension cells of Araucaria angustifolia grown in plant growth regulator-free and plant growth regulator-containing BM media, BM0 and BM2, respectively, were evaluated quantitatively and qualitatively. The concentrated extracellular fractions (CEFs), obtained from suspension cell cultures grown for 20 days in BM0 and BM2 media yielded two fractions, CEF-0 and CEF-2, respectively. CEF-0 and CEF-2 was submitted to selective precipitation using the beta-glucosyl Yariv reagent (beta-GlcY) to isolate AGPs for structural characterization; this yielded fractions designated CEF-0YPF and CEF-2YPF, respectively.

View Article and Find Full Text PDF

Maintaining cell wall integrity is essential for fungal growth and development. We describe two mutants with altered expression of a gene, LmIFRD, from the ascomycete Leptosphaeria maculans. Truncation of the LmIFRD transcript in a T-DNA insertional mutant led to slower germination, less sporulation and loss-of-pathogenicity towards Brassica napus, whereas silencing of the LmIFRD transcript led to increased germination, sporulation and earlier infection.

View Article and Find Full Text PDF

The walls of grasses and related members of the Poales are characterized by the presence of the polysaccharide (1,3, 1,4)-beta-D-glucan (beta-glucan). To date, only members of the grass-specific cellulose synthase-like F (CSLF) gene family have been implicated in its synthesis. Assuming that other grass-specific CSL genes also might encode synthases for this polysaccharide, we cloned HvCSLH1, a CSLH gene from barley (Hordeum vulgare L.

View Article and Find Full Text PDF

Mixed-linkage (1-->3),(1-->4)-beta-D-glucan (MLG) is widely considered to be a defining feature of the cell walls of plants in the Poales order. However, we conducted an extensive survey of cell-wall composition in diverse land plants and discovered that MLG is also abundant in the walls of the horsetail Equisetum arvense. MALDI-TOF MS and monosaccharide linkage analysis revealed that MLG in E.

View Article and Find Full Text PDF

High molecular weight material recovered from the culture filtrate of cell suspension cultured Pyrus communis was composed of 81% carbohydrate, 13% protein and 5% inorganic material. This material was separated into three fractions (one neutral (Fraction A) and two acidic (Fractions B and C)), by anion-exchange chromatography on DEAE-Sepharose CL-6B using a gradient of imidazole-HCl at pH 7.0.

View Article and Find Full Text PDF