Publications by authors named "Fengrong Zuo"

No licensed vaccine is available for prevention of EBV-associated diseases, and robust, high-throughput bioanalytical assays are needed to evaluate immunogenicity of gp350 subunit-based candidate EBV vaccines. Here we have developed an improved EBV-GFP based neutralization assay for such a vaccine's pre-clinical and clinical validation to measure EBV specific neutralizing antibodies in human donors. The supplementation of guinea pig complement of our previously published high-throughput EBV-GFP fluorescent focus (FFA)-based neutralization assay allowed the detection of complement-dependent neutralizing antibodies using a panel of heat-inactivated healthy human sera.

View Article and Find Full Text PDF

Neutralizing antibodies specific for respiratory syncytial virus (RSV) represent a major protective mechanism against RSV infection, as demonstrated by the efficacy of the immune-prophylactic monoclonal antibody palivizumab in preventing RSV-associated lower respiratory tract infections in premature infants. Accordingly, the RSV neutralization assay has become a key functional method to assess the neutralizing activity of serum antibodies in preclinical animal models, epidemiology studies, and clinical trials. In this study, we qualified a 24-h, fluorescent focus-based microneutralization (RSVA FFA-MN) method that requires no medium exchange or pre- or postinfection processing to detect green fluorescent protein-expressing RSV strain A2 (RSVA-GFP)-infected cells, using a high-content imaging system for automated image acquisition and focus enumeration.

View Article and Find Full Text PDF

The goal of most prophylactic vaccines is to elicit robust and effective neutralizing antibodies against the human pathogen target. The titer of neutralizing antibodies to Epstein-Barr Virus (EBV) is a useful biomarker for evaluating EBV vaccines. Here, the development and optimization of a 96-well micro-neutralization fluorescent imaging assay (FIA) using an EBV virus-encoding green fluorescent protein (GFP) to infect adherent EBV recipient cells is reported.

View Article and Find Full Text PDF

Sensitive and precise serology assays are needed to measure the humoral response to antigens of respiratory syncytial virus (RSV) following natural infection or vaccination. We developed and evaluated a collection of electrochemiluminescent (ECL) serology assays using four RSV antigens (F, N, Ga and Gb). To assess the merits of ECL technology, the four ECL serology assays were evaluated using a well-characterized "gold standard" panel of acute and convalescent serum samples from fifty-nine RSV-positive and thirty RSV-negative elderly subjects (≥65 years old).

View Article and Find Full Text PDF

Vaccine prophylaxis with EBV glycoprotein 350 (gp350) subunit plus adjuvant has been demonstrated clinically to protect individuals against infectious mononucleosis (IM), but the specifications of the antigen required to elicit this protection has remained largely theoretical. Previous studies have shown that antibodies to gp350 comprise the principle component of EBV-neutralizing sera. Further, a murine monoclonal antibody against gp350 (clone 72A1) is able to prevent infection by the virus both in vitro and in vivo.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) causes significant disease in elderly adults, but an effective vaccine is not yet available. We have previously reported that vaccines consisting of engineered respiratory syncytial virus soluble fusion protein (RSV sF) adjuvanted with glucopyranosyl lipid A (GLA) in an oil-in-water emulsion (stable emulsion [SE]) induce RSV F-specific T and B cell responses in mice and rats that protect from viral challenge. Here, we evaluated the immunogenicity of GLA-SE adjuvanted RSV sF vs unadjuvanted RSV sF vaccines in cynomolgus macaques (Macaca fascicularis).

View Article and Find Full Text PDF

Unlabelled: Despite substantial morbidity associated with respiratory syncytial virus (RSV) infection, there is no licensed vaccine. MEDI-559 is a live attenuated intranasal vaccine candidate being developed for prevention of lower respiratory illness due to RSV in young children. This randomized, placebo-controlled study evaluated safety of MEDI-559 in healthy, RSV-seronegative children.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in infants and the elderly. Despite its relatively low degree of antigenic variation, it causes frequent reinfection throughout life. Clinical manifestations of RSV disease and the immune response to infection differ in infants and the elderly, suggesting that vaccines designed to protect these two populations may require different attributes.

View Article and Find Full Text PDF

A novel series of indole/indazole-aminopyrimidines was designed and synthesized with an aim to achieve optimal potency and selectivity for the c-Jun kinase family or JNKs. Structure guided design was used to optimize the series resulting in a significant potency improvement. The best compound (17) has IC50 of 3 nM for JNK1 and 20 nM for JNK2, with greater than 40-fold selectivity against other kinases with good physicochemical and pharmacokinetic properties.

View Article and Find Full Text PDF

MEDI-534 is the first live vectored RSV vaccine candidate to be evaluated in seronegative children. It consists of the bovine parainfluenza virus type 3 (PIV3) genome with substituted human PIV3 F and HN glycoproteins engineered to express RSV F protein. A Phase 1 study of 49 healthy RSV and PIV3 seronegative children 6 to <24 months of age demonstrated an acceptable safety profile at the following doses: 10(4), 10(5) and 10(6)TCID50.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) infects elderly (≥65 years) adults, causing medically attended illness and hospitalizations. While RSV neutralizing antibody levels correlate inversely with RSV-associated hospitalization in the elderly, the role of RSV-specific T cells in preventing disease in the elderly remains unclear. We examined RSV-specific humoral, mucosal, and cellular immune profiles in healthy elderly (65 to 85 years) and young (20 to 30 years) adults.

View Article and Find Full Text PDF

A novel series of highly selective JNK inhibitors based on the 4-quinolone scaffold was designed and synthesized. Structure based drug design was utilized to guide the compound design as well as improvements in the physicochemical properties of the series. Compound (13c) has an IC(50) of 62/170 nM for JNK1/2, excellent kinase selectivity and impressive efficacy in a rodent asthma model.

View Article and Find Full Text PDF

Introduction: Little is known about endogenous or cytokine-stimulated aggrecan catabolism in the meniscal fibrocartilage of the knee. The objectives of this study were to characterize the structure, distribution, and processing of aggrecan in menisci from immature bovines, and to identify mechanisms of extracellular matrix degradation that lead to changes in the mechanical properties of meniscal fibrocartilage.

Methods: Aggrecanase activity in the native immature bovine meniscus was examined by immunolocalization of the aggrecan NITEGE neoepitope.

View Article and Find Full Text PDF

Aggregating proteoglycans (PG) bearing chondroitin sulfate (CS) side chains associate with hyaluronan and various secreted proteins to form a complex of extracellular matrix (ECM) that inhibits neural plasticity in the central nervous system (CNS). Chondroitinase treatment depletes PGs of their CS side chains and enhances neurite extension. Increasing evidence from in vivo models indicates that proteolytic cleavage of the PG core protein by members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family of glutamyl-endopeptidases also promotes neural plasticity.

View Article and Find Full Text PDF

Jun N-terminal kinase (JNK) is a stress activated serine/threonine protein kinase that phosphorylates numerous cellular protein substrates including the transcription factors c-Jun and ATF2. In this study, we defined the kinetic mechanism for the active form of JNK2alpha2. Double reciprocal plots of initial rates versus concentrations of substrate revealed the sequential nature of the JNK2alpha2 catalyzed ATF2 phosphorylation.

View Article and Find Full Text PDF

Articular cartilage undergoes matrix degradation and loss of mechanical properties when stimulated with proinflammatory cytokines such as interleukin-1 (IL-1). Aggrecanases and matrix metalloproteinases (MMPs) are thought to be principal downstream effectors of cytokine-induced matrix catabolism, and aggrecanase- or MMP-selective inhibitors reduce or block matrix destruction in several model systems. The objective of this study was to use metalloproteinase inhibitors to perturb IL-1-induced matrix catabolism in bovine cartilage explants and examine their effects on changes in tissue compression and shear properties.

View Article and Find Full Text PDF

Lymphocyte recirculation is dependent on the interactions of adhesion and signaling molecules expressed on lymphocytes and their partners on high endothelial cells (HEC). Many of the events in this process have yet to be molecularly characterized. To identify novel HEC-specific proteins with potential function in the recruitment cascade, we sequenced a normalized human tonsil HEC cDNA library (generated from an inflamed tonsil) from which lymphocyte and human umbilical vein endothelial cell cDNAs had been subtracted.

View Article and Find Full Text PDF

C-terminal truncation of ADAMTS-4 from the p68 form to the p53 form is required for activation of its capacity to cleave the Glu(373)-Ala(374) interglobular domain bond of aggrecan. In transfected human chondrosarcoma cells, this process is not autoproteolytic because the same products form with an inactive mutant of ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin-like motif 4) and truncation is completely blocked by tissue inhibitor of metalloproteinase-1. Instead, activation can be mediated by glycosylphosphatidyl inositol-anchored membrane type 4-matrix metalloproteinase (MT4-MMP, MMP-17) because co-transfection with the active form of MT4-MMP markedly enhanced activation, whereas an inactive mutant of MT4-MMP was ineffective.

View Article and Find Full Text PDF

Proteoglycan aggregates and purified aggrecan from adult and fetal bovine cartilage and adult and neonatal human cartilage were subjected to in vitro degradation by recombinant aggrecanase-1 and aggrecanase-2. The ability of the aggrecanases to cleave within the aggrecan IGD (interglobular domain) and CS2 domain (chondroitin sulphate-rich domain 2) was monitored by SDS/PAGE and immunoblotting. Aggrecanase-2 showed a similar ability to cleave within the IGD of adult and immature aggrecan, whereas aggrecanase-1 was less efficient in cleavage in the IGD of immature aggrecan, for both the bovine and the human substrates.

View Article and Find Full Text PDF

Pulmonary fibrosis is a progressive and largely untreatable group of disorders that affects up to 100,000 people on any given day in the United States. To elucidate the molecular mechanisms that lead to end-stage human pulmonary fibrosis we analyzed samples from patients with histologically proven pulmonary fibrosis (usual interstitial pneumonia) by using oligonucleotide microarrays. Gene expression patterns clearly distinguished normal from fibrotic lungs.

View Article and Find Full Text PDF