High-resolution nanoscale nuclear magnetic resonance (NMR) allows measurement of chemical structure at the single-molecule level for determining molecular dynamics. Until now, nitrogen vacancy centers in diamond have been the only platform to demonstrate single-defect NMR sensing at sub-Hz spectral resolution. Using a single silicon vacancy defect prepared under CMOS-compatible conditions in commercial 4H-silicon carbide at room temperature, we use the Synchronized Readout technique to measure a test signal.
View Article and Find Full Text PDFWe present a new class of luminescent diradicals based on tris(trichlorophenyl)methyl (TTM) cores symmetrically bridged by indolocarbazole donors. These diradicals exhibit pure diradical character and unprecedented photoluminescence quantum yields of up to 18%, addressing key challenges in the development of stable, emissive organic diradicals. Light emitting diradicals represent a formidable challenge for synthetic chemists; for applications as molecular color centers in quantum sensing and as emitters in optoelectronics.
View Article and Find Full Text PDFOrganic radicals and diradicaloids that are both stable and luminescent are promising candidates for molecular qubits in quantum technologies. Here we report two new carbazole-functionalized Chichibabin diradicaloids that in comparison to the parent compound TTM-TTM exhibit a 50 nm bathochromic shift of absorption and a 2-3-fold increase in PLQY.
View Article and Find Full Text PDFPoint defects in diamond, particularly nitrogen-vacancy (NV) centers, have emerged as powerful tools for a broad range of quantum technologies. These defects are promising candidates for quantum information science, serving as deterministic single-photon sources and solid-state quantum memories. They have also been employed as nanoscale quantum sensors to detect various physical quantities, including magnetic fields, electric fields, and temperature, owing to their long spin coherence time at room temperature.
View Article and Find Full Text PDFWe propose and demonstrate experimentally continuous phased dynamical decoupling (CPDD), where we apply a continuous field with discrete phase changes for quantum sensing and robust compensation of environmental and amplitude noise. CPDD does not use short pulses, making it particularly suitable for experiments with limited driving power or nuclear magnetic resonance at high magnetic fields. It requires control of the timing of the phase changes, offering much greater precision than the Rabi frequency control needed in standard continuous sensing schemes.
View Article and Find Full Text PDFNuclear hyperpolarization is a known method to enhance the signal in nuclear magnetic resonance (NMR) by orders of magnitude. The present work addresses the C hyperpolarization in diamond micro- and nanoparticles, using the optically pumped nitrogen-vacancy center (NV) to polarize C spins at room temperature. Consequences of the small particle size are mitigated by using a combination of surface treatment improving the C relaxation () time, as well as that of NV, and applying a technique for NV illumination based on a microphotonic structure.
View Article and Find Full Text PDFNanotechnology
March 2025
Nanoparticles and nanomaterials are revolutionizing medicine by offering diverse tools for diagnosis and therapy, including devices, contrast agents, drug delivery systems, adjuvants, therapeutics, and theragnostic agents. Realizing full applied potential requires a deep understanding of the interactions of nano dimensional objects with biological cells. In this study, we investigate interaction of single-crystal diamond nanoneedles (SCDNNs) containing silicon vacancy (SiV) color centers with biological substances.
View Article and Find Full Text PDFThe ability to process and store information on surrounding nuclear spins is a major requirement for group-IV color center-based repeater nodes. We demonstrate coherent control of a ^{13}C nuclear spin strongly coupled to a negatively charged germanium-vacancy center in diamond with coherence times beyond 2.5 s at mK temperatures, which is the longest reported for group-IV defects.
View Article and Find Full Text PDFUltra-precise readout of single nitrogen-vacancy (NV) spins holds promise for major advancements in quantum sensing, computing, and communication technologies. Here we present a rigorous open quantum theory capable of simultaneously capturing the optical, vibronic, and spin interactions of the negatively charged NV center, both in the presence and absence of plasmonic interaction. Our theory is verified against existing experiments in the literature.
View Article and Find Full Text PDFThe homogeneity of the microwave magnetic field is essential in controlling a large volume of ensemble spins, for example, in the case of sensitive magnetometry with nitrogen-vacancy (NV) centers in diamond. This is particularly important for pulsed measurement, where the fidelity of control pulses plays a crucial role in its sensitivity. So far, several magnetic field-forming systems have been proposed, but no detailed comparison has been made.
View Article and Find Full Text PDFNuclear spin polarization plays a crucial role in quantum information processing and quantum sensing. In this work, we demonstrate a robust and efficient method for nuclear spin polarization with boron vacancy (V_{B}^{-}) defects in hexagonal boron nitride (h-BN) using ground-state level anticrossing (GSLAC). We show that GSLAC-assisted nuclear polarization can be achieved with significantly lower laser power than excited-state level anticrossing, making the process experimentally more viable.
View Article and Find Full Text PDFPhenoxazine is a commonly used molecular building block, for example in optoelectronic applications and pharmaceuticals. However, it is highly susceptible to rapid photodegradation, especially in halogenated solvents. In the present study, we identify the degradation products in both halogenated and non-halogenated solvents by UV/Vis absorption, NMR spectroscopy and mass spectrometry.
View Article and Find Full Text PDFPhys Rev Lett
May 2024
Decoherence and imperfect control are crucial challenges for quantum technologies. Common protection strategies rely on noise temporal autocorrelation, which is not optimal if other correlations are present. We develop and demonstrate experimentally a strategy that uses the cross-correlation of two noise sources.
View Article and Find Full Text PDFNanotechnology
July 2024
The field of nanoscale magnetic resonance imaging (NanoMRI) was started 30 years ago. It was motivated by the desire to image single molecules and molecular assemblies, such as proteins and virus particles, with near-atomic spatial resolution and on a length scale of 100 nm. Over the years, the NanoMRI field has also expanded to include the goal of useful high-resolution nuclear magnetic resonance (NMR) spectroscopy of molecules under ambient conditions, including samples up to the micron-scale.
View Article and Find Full Text PDFConjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that are chemically inert, exhibit high diradical character and emit light at a distinct wavelength that may offer an optical readout of the spin state in functional ensembles. Here we describe the serendipitous discovery of the stable TTM-TTM diradicaloid, which exhibits high diradical character, a striking sky-blue color and near-infrared (NIR) emission (in solution).
View Article and Find Full Text PDFDefect centers in a nanodiamond (ND) allow the detection of tiny magnetic fields in their direct surroundings, rendering them as an emerging tool for nanoscale sensing applications. Eumelanin, an abundant pigment, plays an important role in biology and material science. Here, for the first time, we evaluate the comproportionation reaction in eumelanin by detecting and quantifying semiquinone radicals through the nitrogen-vacancy color center.
View Article and Find Full Text PDFPhys Rev Lett
February 2024
Transform-limited photon emission from quantum emitters is essential for high-fidelity entanglement generation. In this Letter, we report the coherent optical property of a single negatively charged lead-vacancy (PbV) center in diamond. Photoluminescence excitation measurements reveal stable fluorescence with a linewidth of 39 MHz at 6 K, close to the transform limit estimated from the lifetime measurement.
View Article and Find Full Text PDFUnderstanding and mastering quantum electrodynamics phenomena is essential to the development of quantum nanophotonics applications. While tailoring of the local vacuum field has been widely used to tune the luminescence rate and directionality of a quantum emitter, its impact on their transition energies is barely investigated and exploited. Fluorescent defects in nanosized diamonds constitute an attractive nanophotonic platform to investigate the Lamb shift of an emitter embedded in a dielectric nanostructure with high refractive index.
View Article and Find Full Text PDFNegatively charged group-IV defects in diamond show great potential as quantum network nodes due to their efficient spin-photon interface. However, reaching sufficiently long coherence times remains a challenge. In this work, we demonstrate coherent control of germanium vacancy center (GeV) at millikelvin temperatures and extend its coherence time by several orders of magnitude to more than 20 ms.
View Article and Find Full Text PDFACS Appl Electron Mater
December 2023
Spin-based applications of the negatively charged nitrogen-vacancy (NV) center in diamonds require an efficient spin readout. One approach is the spin-to-charge conversion (SCC), relying on mapping the spin states onto the neutral (NV) and negative (NV) charge states followed by a subsequent charge readout. With high charge-state stability, SCC enables extended measurement times, increasing precision and minimizing noise in the readout compared to the commonly used fluorescence detection.
View Article and Find Full Text PDFA new carbazole-substituted bisterpyridine with pronounced delayed fluorescence is presented. While the molecular donor-acceptor-donor design suggests the origin of this to be thermally activated delayed fluorescence (TADF), results from various photophysical characterizations, OLED characteristics, temperature-dependent NMR spectroscopy, and DFT calculations all point against the involvement of triplet states. The molecule exhibits blue emission at about 440 nm with two or more fast decay channels in the lower nanosecond range in both solution and thin films.
View Article and Find Full Text PDFDiffusion noise represents a major constraint to successful liquid state nano-NMR spectroscopy. Using the Fisher information as a faithful measure, we theoretically calculate and experimentally show that phase sensitive protocols are superior in most experimental scenarios, as they maximize information extraction from correlations in the sample. We derive the optimal experimental parameters for quantum heterodyne detection (Qdyne) and present the most accurate statistically polarized nano-NMR Qdyne detection experiments to date, leading the way to resolve chemical shifts and J couplings at the nanoscale.
View Article and Find Full Text PDFBackground: Epigenetic mechanisms are informational cellular processes instructing normal and diseased phenotypes. They are associated with DNA but without altering the DNA sequence. Whereas chemical processes like DNA methylation or histone modifications are well-accepted epigenetic mechanisms, we herein propose the existence of an additional quantum physics layer of epigenetics.
View Article and Find Full Text PDFDespite the exceptional resolution in aberration-corrected high-resolution transmission electron microscope (AC-HRTEM) images of inorganic two-dimensional (2D) materials, achieving high-resolution imaging of organic 2D materials remains a daunting challenge due to their low electron resilience. Optimizing the critical dose (the electron exposure, the material can accept before it is noticeably damaged) is vital to mitigate this challenge. An understanding of electron resilience in porous crystalline 2D polymers including the effect of sample thickness has not been derived thus far.
View Article and Find Full Text PDF