Publications by authors named "Fatemeh Sadat Majedi"

Cell clusters that collectively migrate from primary tumors appear to be far more potent in forming distant metastases than single cancer cells. A better understanding of the collective cell migration phenomenon and the involvement of various cell types during this process is needed. Here, an in vitro platform based on inverted-pyramidal microwells to follow and quantify the collective migration of hundreds of tumor cell clusters at once is developed.

View Article and Find Full Text PDF

Immune cells can sense and respond to biophysical cues - from dynamic forces to spatial features - during their development, activation, differentiation and expansion. These biophysical signals regulate a variety of immune cell functions such as leukocyte extravasation, macrophage polarization, T cell selection and T cell activation. Recent studies have advanced our understanding on immune responses to biophysical cues and the underlying mechanisms of mechanotransduction, which provides rational basis for the design and development of immune-modulatory therapeutics.

View Article and Find Full Text PDF

Controlling stem cell (SC) fate is an extremely important topic in the realm of SC research. A variety of different external cues mainly mechanical, chemical, or electrical stimulations individually or in combination have been incorporated to control SC fate. Here, we will deconstruct the probable relationship between the functioning of electromagnetic (EMF) and SC fate of a variety of different SCs.

View Article and Find Full Text PDF
Article Synopsis
  • Nanoparticle (NP) drug encapsulation offers benefits like reduced off-target distribution and protection from environmental degradation.
  • The study reveals that the size and surface charge of chitosan NPs influence their endocytosis in HeLa cells, with smaller NPs being internalized more effectively due to stronger interactions with the cell membrane.
  • Additionally, the orientation of cell culture (upright vs. inverted) significantly affects the uptake of NPs, highlighting the importance of understanding the particokinetics in drug delivery systems.
View Article and Find Full Text PDF
Article Synopsis
  • A microfluidics method is used to create core-shell nanocarriers that can be adjusted for different pH levels.
  • The outer shell safeguards the drug-containing core from being released in harsh pH environments like the gastrointestinal tract, but enables release near tumors.
  • This innovative drug-delivery system is developed for delivering cancer treatments orally.
View Article and Find Full Text PDF

Polyelectrolyte-coated magnetic nanoparticles were prepared by decorating the surface of superparamagnetic iron oxide nanoparticles (SPIONs) with crosslinked chitosan oligopolysaccharide (CS). These positively charged particles (CS-SPIONs) were then added to a negatively charged polymer (Nafion), and cast into membranes under an applied magnetic field. TEM and SAXS measurements confirmed this process created aligned, cylindrical nanodomains in the membranes.

View Article and Find Full Text PDF

Microfluidic platform for the synthesis of complex nanocapsules is presented via a controlled self-assembly. The monodisperse nanocapsules in the range of 50-200 nm consist of a dendritic polyethylene core and a Pluronic copolymer shell. The resultant nanocarriers encapsulate large amount of hydrophobic anticancer drug like paclitaxel while providing a low complement activation as well as sustained release profile with high tunability.

View Article and Find Full Text PDF

Here, we demonstrate a new approach for the synthesis of ion exchange microfibers with finely tuned anhydrous conductivity. This work presents microfluidics as a system to control the size and phosphoric acid (PA) doping level of the polybenzimidazole (PBI) microfibers. It has been shown that the PA doping level can be controlled by varying the flow ratios in the microfluidic channel.

View Article and Find Full Text PDF

Here we demonstrate design and electrochemical characterization of novel proton exchange membranes based on Nafion and superacid-doped polymer coated carbon nanotubes (CNTs). Polybenzimidazole-decorated CNT (PBI-CNT), a high-performance proton exchange nanostructure, was doped using phosphotungstic acid (PWA) as a super proton conductor. The engineered nanohybrid structure was shown to retain water molecules and provide high proton conduction at low humidity and elevated temperatures.

View Article and Find Full Text PDF

We present a microfluidic platform for the synthesis of monodisperse chitosan based nanoparticles via self-assembly at physiological pH. The resultant nanoparticles are shown to encapsulate hydrophobic anticancer drugs while providing a sustainable release profile with high tunability.

View Article and Find Full Text PDF

At nanoscale length scales, the properties of particles change rapidly with the slightest change in dimension. The use of a microfluidic platform enables precise control of sub-100 nm organic nanoparticles (NPs) based on polybenzimidazole. Using hydrodynamic flow focusing, we can control the size and shape of the NPs, which in turn controls a number of particle material properties.

View Article and Find Full Text PDF

A microfluidic platform is developed for the synthesis of monodisperse, 100 nm, chitosan based nanoparticles using nanogelation with ATP. The resulting nanoparticles tuned and enhanced transport and electrochemical properties of Nafion based nanocomposite membranes, which is highly favorable for fuel cell applications.

View Article and Find Full Text PDF