Publications by authors named "Fabio Roland"

In 2020, the largest continuous wetland area on the planet, the Brazilian Pantanal, experienced an unprecedented fire that affected the entire ecosystem. Our goal was to elucidate the effects of ash presence following the fire events. We quantified the impact of ashes, collected in four Conservation Units, on soil, water, and atmosphere.

View Article and Find Full Text PDF

The enormous biodiversity of tropical freshwater combined with a considerable increase in the construction of reservoirs urges to understand the ecological effects caused by damming. Using rarely available data obtained before (one year) and after (four years) the filling of a hydroelectric plant on the Teles Pires River (Amazon River basin), the effects on abundance, biomass, and diversity of the fish assemblage were evaluated using two complementary approaches: a BACI (before-after-control-impact) design with mixed models and analyses of covariance. Significant Before-After × Control-Impact interactions in abundance, biomass, and species richness were observed, with decreases of abundance and species richness and more stable biomass after filling.

View Article and Find Full Text PDF

Despite substantial advances in quantifying greenhouse gas (GHG) emissions from dry inland waters, existing estimates mainly consist of carbon dioxide (CO) emissions. However, methane (CH) may also be relevant due to its higher Global Warming Potential (GWP). We report CH emissions from dry inland water sediments to i) provide a cross-continental estimate of such emissions for different types of aquatic systems (i.

View Article and Find Full Text PDF

Caffeine is a contaminant frequently detected in water bodies. Growth trends in both human population and caffeine consumption per capita are expected to exacerbate the occurrence of caffeine in freshwaters. Yet the effects of caffeine on native fish fauna are poorly understood.

View Article and Find Full Text PDF

In Brazil, environmental occurrence of micropollutants, such as pharmaceuticals, is rarely studied, and these compounds are not part of national water quality guidelines. In this study, we evaluated the occurrence of micropollutants in the Paraibuna River, located in the southeast region of Brazil, which is the most populated region of the country. Surface water samples were taken every 3 months for 1.

View Article and Find Full Text PDF

High temperature can promote cyanobacterial blooms, whereas ultraviolet radiation (UVR) can potentially depress cyanobacterial growth by damaging their photosynthetic apparatus. Although the damaging effect of UVR has been well documented, reports on the interactive effects of UV radiation exposure and warming on cyanobacteria remain scarce. To better understand the combined effects of temperature and UVR on cyanobacteria, two strains of nuisance species, Microcystis aeruginosa (MIRF) and Raphidiopsis raciborskii (formerly Cylindrospermopsis raciborskii, CYRF), were grown at 24°C and 28°C and were daily exposed to UVA + UVB (PAR + UVA+UVB) or only UVA (PAR + UVA) radiation.

View Article and Find Full Text PDF

Increased periods of prolonged droughts followed by severe precipitation events are expected throughout South America due to climate change. Freshwater sediments are especially sensitive to these changing climate conditions. The increased oscillation of water levels in aquatic ecosystems causes enhanced cycles of sediment drying and rewetting.

View Article and Find Full Text PDF

Run-of-river dams are often considered to have lower environmental impacts than storage dams due to their smaller reservoirs and low potential for flow alteration. However, this has been questioned for projects recently built on large rivers around the world. Two of the world's largest run-of-river dams-Santo Antônio and Jirau-were recently constructed on the Madeira River, a major tributary to the Amazon River in Brazil.

View Article and Find Full Text PDF

Caffeine is one of the most consumed substances, and it has been largely detected in aquatic ecosystems. We investigated the trends in caffeine consumption over three decades and its relationships with gross domestic product (GDP) and human development index (HDI) to understand global patterns and to identify potential hotspots of contamination. The total caffeine consumption is increasing mainly due to population growth.

View Article and Find Full Text PDF

Macrophyte detritus is one of the main sources of organic carbon (OC) in inland waters, and it is potentially available for methane (CH) production in anoxic bottom waters and sediments. However, the transformation of macrophyte-derived OC into CH has not been studied systematically, thus its extent and relationship with macrophyte characteristics remains uncertain. We performed decomposition experiments of macrophyte detritus from 10 different species at anoxic conditions, in presence and absence of a freshwater sediment, in order to relate the extent and rate of CH production to the detritus water content, C/N and C/P ratios.

View Article and Find Full Text PDF

Reservoir sediment can work as both sink and source for contaminants. Once released into the water column, contaminants can be toxic to biota and humans. We investigate potential ecological risk to benthic organisms by metals contamination in six reservoirs in Southeast Brazil.

View Article and Find Full Text PDF
Article Synopsis
  • - In Brazil, a study highlights that 64% of people self-medicate and 66% dispose of unused or expired medicines in the trash, which could harm the environment.
  • - A significant 71.9% of respondents have never received information on how to properly dispose of medicines, indicating a gap in public awareness.
  • - Nearly all participants (95.2%) recognize that pharmaceutical waste can be damaging to the environment, suggesting that increased environmental education is essential to address this issue.
View Article and Find Full Text PDF

On November 2015, one of Brazil's most important watersheds was impacted by the mine waste from Fundão dam collapse in Mariana. The mine waste traveled over 600 km along the Doce River before reaching the sea, causing severe devastation along its way. Here we assessed trace element concentrations and cytogenotoxic effects of the released mine waste.

View Article and Find Full Text PDF

An important question in the context of climate change is to understand how CH production is regulated in anoxic sediments of lakes and reservoirs. The type of organic carbon (OC) present in lakes is a key factor controlling CH production at anoxic conditions, but the studies investigating the methanogenic potential of the main OC types are fragmented. We incubated different types of allochthonous OC (alloOC; terrestrial plant leaves) and autochthonous OC (autoOC; phytoplankton and two aquatic plants species) in an anoxic sediment during 130 d.

View Article and Find Full Text PDF

The magnitude of diffusive carbon dioxide (CO) and methane (CH) emission from man-made reservoirs is uncertain because the spatial variability generally is not well-represented. Here, we examine the spatial variability and its drivers for partial pressure, gas-exchange velocity (k), and diffusive flux of CO and CH in three tropical reservoirs using spatially resolved measurements of both gas concentrations and k. We observed high spatial variability in CO and CH concentrations and flux within all three reservoirs, with river inflow areas generally displaying elevated CH concentrations.

View Article and Find Full Text PDF

Element cycling in aquatic systems is driven chiefly by planktonic processes, and the structure of the planktonic food web determines the efficiency of carbon transfer through trophic levels. However, few studies have comprehensively evaluated all planktonic food-web components in tropical regions. The aim of this study was to unravel the top-down controls (metazooplankton community structure), bottom-up controls (resource availability), and hydrologic (water residence time) and physical (temperature) variables that affect different components of the microbial food web (MFW) carbon stock in tropical reservoirs, through structural equation models (SEM).

View Article and Find Full Text PDF

Recent studies from temperate lakes indicate that eutrophic systems tend to emit less carbon dioxide (CO2) and bury more organic carbon (OC) than oligotrophic ones, rendering them CO2 sinks in some cases. However, the scarcity of data from tropical systems is critical for a complete understanding of the interplay between eutrophication and aquatic carbon (C) fluxes in warm waters. We test the hypothesis that a warm eutrophic system is a source of both CO2 and CH4 to the atmosphere, and that atmospheric emissions are larger than the burial of OC in sediments.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies show lower abundances of heterotrophic bacteria (HB) in tropical regions, suggesting that factors leading to bacterial losses are more significant there.
  • Heterotrophic nanoflagellates (HNF), typically the main predators of HB, were expected to be more abundant in the tropics due to differences in food webs; however, our comprehensive dataset revealed both HB and HNF abundances to be lower in tropical freshwaters with no difference in HNF-HB coupling across latitudes.
  • The findings suggest that HNF are not the primary regulators of HB abundance in the tropics, and that other factors like grazing by ciliates and cladocerans, along with higher temperatures, contribute to increased bacterial loss rates.
View Article and Find Full Text PDF

Cyanobacteria are aquatic photosynthetic microorganisms. While of enormous ecological importance, they have also been linked to human and animal illnesses around the world as a consequence of toxin production by some species. Cylindrospermopsis raciborskii, a filamentous nitrogen-fixing cyanobacterium, has attracted considerable attention due to its potential toxicity and ecophysiological adaptability.

View Article and Find Full Text PDF
Article Synopsis
  • A study evaluated bacterial carbon processing in Amazonian floodplain lakes and mainstems during high and low water phases, finding lower bacterial production compared to respiration.
  • The research revealed that bacterial growth efficiency was low and variable, suggesting that most dissolved organic carbon was used for energy rather than growth.
  • Hydrological changes influenced the relationship between bacterial metabolism and organic matter quality, indicating that respiration largely drives bacterial activity in these ecosystems.
View Article and Find Full Text PDF

In response to the massive volume of water along the Amazon River, the Amazon tributaries have their water backed up by 100s of kilometers upstream their mouth. This backwater effect is part of the complex hydrodynamics of Amazonian surface waters, which in turn drives the variation in concentrations of organic matter and nutrients, and also regulates planktonic communities such as viruses and bacteria. Viruses and bacteria are commonly tightly coupled to each other, and their ecological role in aquatic food webs has been increasingly recognized.

View Article and Find Full Text PDF

Metacommunity studies on lake bacterioplankton indicate the importance of environmental factors in structuring communities. Yet most of these studies cover relatively small spatial scales. We assessed the relative importance of environmental and spatial factors in shaping bacterioplankton communities across a > 6000 km latitudinal range, studying 48 shallow lowland lakes in the tropical, tropicali (isothermal subzone of the tropics) and tundra climate regions of South America using denaturing gradient gel electrophoresis.

View Article and Find Full Text PDF

River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off.

View Article and Find Full Text PDF