Publications by authors named "Eungjun Lee"

Rational design of catalytic nanomaterials is essential for developing high-performance fuel cell catalysts. However, structural degradation and elemental dissolution during operation pose significant challenges to achieving long-term stability. Herein, the development of multi-grained NiPt nanocatalysts featuring an atomically ordered NiPt phase within intragrain is reported.

View Article and Find Full Text PDF

Proton exchange membrane fuel cells (PEMFCs) are emerging as a key technology in the transition to hydrogen-based energy systems, particularly for heavy-duty vehicles (HDVs) that face operational challenges, such as frequent startup-shutdown cycles and fuel starvation. However, the widespread adoption of PEMFCs has been limited by their durability and long-term performance issues, which are crucial for heavy-duty applications. This Perspective focuses on recent advancements in PEMFC catalysts and supports, with an emphasis on strategies to enhance their durability.

View Article and Find Full Text PDF

Electrochemically generating hydrogen peroxide (HO) from oxygen offers a more sustainable and cost-effective alternative to conventional anthraquinone process. In alkaline conditions, HO is unstable as HO , and in neutral electrolytes, alkali cation crossover causes system instability. Producing HO in acidic electrolytes ensures enhanced stability and efficiency.

View Article and Find Full Text PDF

Recently, the polymer nanofiber web is in high demand as a strong barrier against harmful particles due to its high capture efficiency and strong droplet-blocking ability. As an advanced spinning technique, the centrifugal multispinning system was designed by sectioning a rotating disk into triple subdisks, showing mass producibility of polymer nanofibers with cospinning ability. Using the system, gram-scale production of polystyrene (PS), poly(methyl methacrylate), and polyvinylpyrrolidone (PVP) was demonstrated, showing a possibility for versatile use of the system.

View Article and Find Full Text PDF

Since the global pandemic of coronavirus disease 2019 (COVID-19), the process of emergency medical services has been modified to ensure the safety of healthcare professionals as well as patients, possibly leading to a negative impact on the timely delivery of acute stroke care. This study aimed to assess the impact of the COVID-19 pandemic on the acute stroke care processes and outcomes in tertiary COVID-19-dedicated centers in South Korea. We included 1,213 patients with acute stroke admitted to three centers in three cities (Seoul, Seongnam, and Daegu) through the stroke critical pathway between September 2019 and May 2020 (before and during the COVID-19 pandemic).

View Article and Find Full Text PDF

Compared to nanostructured platinum (Pt) catalysts, ordered Pt-based intermetallic nanoparticles supported on a carbon substrate exhibit much enhanced catalytic performance, especially in fuel cell electrocatalysis. However, direct synthesis of homogeneous intermetallic alloy nanocatalysts on carbonaceous supports with high loading is still challenging. Herein, we report a novel synthetic strategy to directly produce highly dispersed MPt alloy nanoparticles (M = Fe, Co, or Ni) on various carbon supports with high catalyst loading.

View Article and Find Full Text PDF