Cellular responses to abiotic stress involve multiple signals such as reactive oxygen species (ROS), Ca, abscisic acid (ABA), and chloroplast-to-nucleus retrograde signals such as 3'-phosphoadenosine 5'-phosphate (PAP). The mechanism(s) by which these messengers intersect for cell regulation remain enigmatic, as do the roles of retrograde signals in specialized cells. Here we demonstrate a mechanistic link enabling ABA and PAP to coordinate chloroplast and plasma membrane ROS production.
View Article and Find Full Text PDFPlasmodesmata are plasma membrane-lined connections that join plant cells to their neighbours, establishing an intercellular cytoplasmic continuum through which molecules can travel between cells, tissues, and organs. As plasmodesmata connect almost all cells in plants, their molecular traffic carries information and resources across a range of scales, but dynamic control of plasmodesmal aperture can change the possible domains of molecular exchange under different conditions. Plasmodesmal aperture is controlled by specialised signalling cascades accommodated in spatially discrete membrane and cell wall domains.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2023
The plant immune system relies on the perception of molecules that signal the presence of a microbe threat. This triggers signal transduction that mediates a range of cellular responses via a collection of molecular machinery including receptors, small molecules, and enzymes. One response to pathogen perception is the restriction of cell-to-cell communication by plasmodesmal closure.
View Article and Find Full Text PDFPlant cells are connected by cytoplasmic bridges called plasmodesmata. Plasmodesmata are lined by the plasma membrane, essentially forming tunnels that directly connect the cytoplasm of adjacent cells through which soluble molecules can move from cell to cell. This cell-to-cell mobility is underpinned by cytoplasmic advection and diffusion in a manner dependent on molecular size.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2019
Chloroplast retrograde signaling networks are vital for chloroplast biogenesis, operation, and signaling, including excess light and drought stress signaling. To date, retrograde signaling has been considered in the context of land plant adaptation, but not regarding the origin and evolution of signaling cascades linking chloroplast function to stomatal regulation. We show that key elements of the chloroplast retrograde signaling process, the nucleotide phosphatase (SAL1) and 3'-phosphoadenosine-5'-phosphate (PAP) metabolism, evolved in streptophyte algae-the algal ancestors of land plants.
View Article and Find Full Text PDFOrganelle-nuclear retrograde signaling regulates gene expression, but its roles in specialized cells and integration with hormonal signaling remain enigmatic. Here we show that the SAL1-PAP (3'-phosphoadenosine 5'- phosphate) retrograde pathway interacts with abscisic acid (ABA) signaling to regulate stomatal closure and seed germination in . Genetically or exogenously manipulating PAP bypasses the canonical signaling components ABA Insensitive 1 (ABI1) and Open Stomata 1 (OST1); priming an alternative pathway that restores ABA-responsive gene expression, ROS bursts, ion channel function, stomatal closure and drought tolerance in -2.
View Article and Find Full Text PDF