Publications by authors named "Erica de Leau"

A key adaptation of plants to life on land is the formation of water-conducting cells (WCCs) for efficient long-distance water transport. Based on morphological analyses it is thought that WCCs have evolved independently on multiple occasions. For example, WCCs have been lost in all but a few lineages of bryophytes but, strikingly, within the liverworts a derived group, the complex thalloids, has evolved a novel externalized water-conducting tissue composed of reinforced, hollow cells termed pegged rhizoids.

View Article and Find Full Text PDF

Polycomb group (PcG) protein-mediated histone methylation (H3K27me3) controls the correct spatiotemporal expression of numerous developmental regulators in Arabidopsis. Epigenetic silencing of the stem cell factor gene WUSCHEL (WUS) in floral meristems (FMs) depends on H3K27me3 deposition by PcG proteins. However, the role of H3K27me3 in silencing of other meristematic regulator and pluripotency genes during FM determinacy has not yet been studied.

View Article and Find Full Text PDF

Tropical corals and Amphistegina, an example genus of symbiont-bearing larger benthic foraminifera, are presently living close to their thermal bleaching thresholds. As such, these essential reef-building organisms are vulnerable to the future prospect of more frequent sea surface temperature (SST) extremes. Exploring the earth's paleo-climatic record, including interglacials warmer than present, may provide insights into future oceanographic conditions.

View Article and Find Full Text PDF

In eukaryotes, histone acetylation is a major modification on histone N-terminal tails that is tightly connected to transcriptional activation. HDA6 is a histone deacetylase involved in the transcriptional regulation of genes and transposable elements (TEs) in Arabidopsis thaliana. HDA6 has been shown to participate in several complexes in plants, including a conserved SIN3 complex.

View Article and Find Full Text PDF

A large fraction of plant genomes is composed of transposable elements (TE), which provide a potential source of novel genes through "domestication"-the process whereby the proteins encoded by TE diverge in sequence, lose their ability to catalyse transposition and instead acquire novel functions for their hosts. In Arabidopsis, ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN 1 (ALP1) arose by domestication of the nuclease component of Harbinger class TE and acquired a new function as a component of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a histone H3K27me3 methyltransferase involved in regulation of host genes and in some cases TE. It was not clear how ALP1 associated with PRC2, nor what the functional consequence was.

View Article and Find Full Text PDF

Within the world's oceans, regionally distinct ecological niches develop due to differences in water temperature, nutrients, food availability, predation and light intensity. This results in differences in the vertical dispersion of planktonic foraminifera on the global scale. Understanding the controls on these modern-day distributions is important when using these organisms for paleoceanographic reconstructions.

View Article and Find Full Text PDF

RNA-binding proteins play a key role in shaping gene expression profiles during stress, however, little is known about the dynamic nature of these interactions and how this influences the kinetics of gene expression. To address this, we developed kinetic cross-linking and analysis of cDNAs (χCRAC), an ultraviolet cross-linking method that enabled us to quantitatively measure the dynamics of protein-RNA interactions in vivo on a minute time-scale. Here, using χCRAC we measure the global RNA-binding dynamics of the yeast transcription termination factor Nab3 in response to glucose starvation.

View Article and Find Full Text PDF

The Polycomb group (PcG) and trithorax group (trxG) genes play crucial roles in development by regulating expression of homeotic and other genes controlling cell fate. Both groups catalyse modifications of chromatin, particularly histone methylation, leading to epigenetic changes that affect gene activity. The trxG antagonizes the function of PcG genes by activating PcG target genes, and consequently trxG mutants suppress PcG mutant phenotypes.

View Article and Find Full Text PDF

Using Arabidopsis (Arabidopsis thaliana) seedlings, we identified a range of small fluorescent probes that entered the translocation stream and were unloaded at the root tip. These probes had absorbance/emission maxima ranging from 367/454 to 546/576 nm and represent a versatile toolbox for studying phloem transport. Of the probes that we tested, naturally occurring fluorescent coumarin glucosides (esculin and fraxin) were phloem loaded and transported in oocytes by the sucrose transporter, AtSUC2.

View Article and Find Full Text PDF

In Arabidopsis, mutations in the Pc-G gene CURLY LEAF (CLF) give early flowering plants with curled leaves. This phenotype is caused by mis-expression of the floral homeotic gene AGAMOUS (AG) in leaves, so that ag mutations largely suppress the clf phenotype. Here, we identify three mutations that suppress clf despite maintaining high AG expression.

View Article and Find Full Text PDF

SbcCD and other Mre11/Rad50 (MR) complexes are implicated in the metabolism of DNA ends. They cleave ends sealed by hairpin structures and have been postulated to play roles in removing protein bound to DNA termini. Here we provide direct evidence that the Escherichia coli MR complex (SbcCD) removes protein from a protein-bound DNA end by inserting a double-strand break (DSB).

View Article and Find Full Text PDF