Publications by authors named "John C Connelly"

DNA methylation is implicated in neuronal biology via the protein MeCP2, the mutation of which causes Rett syndrome. MeCP2 recruits the NCOR1/2 co-repressor complexes to methylated cytosine in the CG dinucleotide, but also to sites of non-CG methylation, which are abundant in neurons. To test the biological significance of the dual-binding specificity of MeCP2, we replaced its DNA binding domain with an orthologous domain from MBD2, which can only bind mCG motifs.

View Article and Find Full Text PDF

MeCP2 is a nuclear protein that binds to sites of cytosine methylation in the genome. While most evidence confirms this epigenetic mark as the primary determinant of DNA binding, MeCP2 is also reported to have an affinity for non-methylated DNA sequences. Here we investigated the molecular basis and in vivo significance of its reported affinity for non-methylated GT-rich sequences.

View Article and Find Full Text PDF

Mutations in the gene encoding the methyl-CG binding protein MeCP2 cause several neurological disorders including Rett syndrome. The di-nucleotide methyl-CG (mCG) is the classical MeCP2 DNA recognition sequence, but additional methylated sequence targets have been reported. Here we show by in vitro and in vivo analyses that MeCP2 binding to non-CG methylated sites in brain is largely confined to the tri-nucleotide sequence mCAC.

View Article and Find Full Text PDF

Structural maintenance of chromosomes (SMC) proteins have diverse cellular functions including chromosome segregation, condensation and DNA repair. They are grouped based on a conserved set of distinct structural motifs. All SMC proteins are predicted to have a bipartite ATPase domain that is separated by a long region predicted to form a coiled coil.

View Article and Find Full Text PDF

A potentially lethal form of DNA/RNA modification, a cleavage complex, occurs when a nucleic acid-processing enzyme that acts via a transient covalent intermediate becomes trapped at its site of action. A number of overlapping pathways act to repair these lesions and many of the enzymes involved are those that catalyze recombinational-repair processes. A protein, Tdp1, has been identified that reverses cleavage-complex formation by specifically hydrolyzing a tyrosyl-DNA phosphodiester bond.

View Article and Find Full Text PDF

SbcCD and other Mre11/Rad50 (MR) complexes are implicated in the metabolism of DNA ends. They cleave ends sealed by hairpin structures and have been postulated to play roles in removing protein bound to DNA termini. Here we provide direct evidence that the Escherichia coli MR complex (SbcCD) removes protein from a protein-bound DNA end by inserting a double-strand break (DSB).

View Article and Find Full Text PDF

The urinary excretion of metabolites of 2,3-benzofuran was studied in Sprague-Dawley rats (n = 5) given a single dose of 150 mg/kg i.p. Urine samples were collected at defined intervals up to 7 days postdose and analyzed using (1).

View Article and Find Full Text PDF

Mre11-Rad50 (MR) proteins are encoded by bacteriophage, eubacterial, archeabacterial and eukaryotic genomes, and form a complex with a remarkable protein architecture. This complex is capable of tethering the ends of DNA molecules, possesses a variety of DNA nuclease, helicase, ATPase and annealing activities, and performs a wide range of functions within cells. It is required for meiotic recombination, double-strand break repair, processing of mis-folded DNA structures and maintaining telomere length.

View Article and Find Full Text PDF