J Am Med Inform Assoc
January 2024
Objective: We implemented a chatbot consent tool to shift the time burden from study staff in support of a national genomics research study.
Materials And Methods: We created an Institutional Review Board-approved script for automated chat-based consent. We compared data from prospective participants who used the tool or had traditional consent conversations with study staff.
Objective: To conduct a retrospective analysis comparing traditional human-based consenting to an automated chat-based consenting process.
Materials And Methods: We developed a new chat-based consent using our IRB-approved consent forms. We leveraged a previously developed platform (Gia, or "Genetic Information Assistant") to deliver the chat content to candidate participants.
There has been one previous report of a cohort of patients with variants in Chromodomain Helicase DNA-binding 3 (CHD3), now recognized as Snijders Blok-Campeau syndrome. However, with only three previously-reported patients with variants outside the ATPase/helicase domain, it was unclear if variants outside of this domain caused a clinically similar phenotype. We have analyzed 24 new patients with CHD3 variants, including nine outside the ATPase/helicase domain.
View Article and Find Full Text PDFSci Rep
November 2019
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFSci Rep
May 2019
The three-dimensional organization of the genome in mammalian interphase nuclei is intrinsically linked to the regulation of gene expression. Whole chromosome territories and their encoded gene loci occupy preferential positions within the nucleus that changes according to the expression profile of a given cell lineage or stage. To further illuminate the relationship between chromosome organization, epigenetic environment, and gene expression, here we examine the functional organization of chromosome X and corresponding X-linked genes in a variety of healthy human and disease state X diploid (XX) cells.
View Article and Find Full Text PDFMol Genet Genomic Med
May 2019
Background: Advances in sequencing technology have led to expanded use of multi-gene panel tests (MGPTs) for clinical diagnostics. Well-designed MGPTs must balance increased detection of clinically significant findings while mitigating the increase in variants of uncertain significance (VUS). To maximize clinical utililty, design of such panels should include comprehensive gene vetting using a standardized clinical validity (CV) scoring system.
View Article and Find Full Text PDFPurpose: We evaluated clinical and genetic features enriched in patients with multiple Mendelian conditions to determine which patients are more likely to have multiple potentially relevant genetic findings (MPRF).
Methods: Results of the first 7698 patients who underwent exome sequencing at Ambry Genetics were reviewed. Clinical and genetic features were examined and degree of phenotypic overlap between the genetic diagnoses was evaluated.
In rodent hippocampus, the inflammatory cytokine interleukin-1β (IL-1β) impairs memory and long-term potentiation (LTP), a major form of plasticity that depends on protein synthesis. A better understanding of the mechanisms by which IL-1β impairs LTP may help identify targets for preventing cognitive deterioration. We tested whether IL-1β inhibits protein synthesis in hippocampal neuron cultures following chemically induced LTP (cLTP).
View Article and Find Full Text PDFHennekam lymphangiectasia-lymphedema syndrome (HKLLS) is a genetically heterogeneous lymphatic dysplasia with characteristic of facial dysmorphism, neurocognitive impairments, and abnormalities of the pericardium, intestinal tract, and extremities. It is an autosomal recessive condition caused by biallelic mutations in CCBE1 (collagen- and calcium-binding epidermal growth factor domain-containing protein 1) (HKLLS1; OMIM 235510) or FAT4 (HKLLS2; OMIM 616006). CCBE1 acts via ADAMTS3 (a disintegrin and metalloprotease with thrombospondin motifs-3 protease) to enhance vascular endothelial growth factor C signaling.
View Article and Find Full Text PDFDifferentiation
November 2018
The protein-DNA complexes that compose the end of mammalian chromosomes-telomeres-serve to stabilize linear genomic DNA and are involved in cellular and organismal aging. One mechanism that protects telomeres from premature degradation is the formation of structures called t-loops, in which the single-stranded 3' overhang present at the terminal end of telomeres loops back and invades medial double-stranded telomeric DNA. We identified looped structures formed between terminal chromosome ends and interstitial telomeric sequences (ITSs), which are found throughout the human genome, that we have termed interstitial telomeric loops (ITLs).
View Article and Find Full Text PDFNeurochem Res
January 2019
CNS inflammatory responses are linked to cognitive impairment in humans. Research in animal models supports this connection by showing that inflammatory cytokines suppress long-term potentiation (LTP), the best-known cellular correlate of memory. Cytokine-induced modulation of LTP has been previously studied in vivo or in brain slices, two experimental approaches containing multiple cell populations responsive to cytokines.
View Article and Find Full Text PDFSex chromosome gene dosage compensation is required to ensure equivalent levels of X-linked gene expression between males (46, XY) and females (46, XX). To achieve similar expression, X-chromosome inactivation (XCI) is initiated in female cells during early stages of embryogenesis. Within each cell, either the maternal or paternal X chromosome is selected for whole chromosome transcriptional silencing, which is initiated and maintained by epigenetic and chromatin conformation mechanisms.
View Article and Find Full Text PDFAscertaining a diagnosis through exome sequencing can provide potential benefits to patients, insurance companies, and the healthcare system. Yet, as diagnostic sequencing is increasingly employed, vast amounts of human genetic data are produced that need careful curation. We discuss methods for accurately assessing the clinical validity of gene-disease relationships to interpret new research findings in a clinical context and increase the diagnostic rate.
View Article and Find Full Text PDFGroup A streptococcal (GAS) infection induces the production of Abs that cross-react with host neuronal proteins, and these anti-GAS mimetic Abs are associated with autoimmune diseases of the CNS. However, the mechanisms that allow these Abs to cross the blood-brain barrier (BBB) and induce neuropathology remain unresolved. We have previously shown that GAS infection in mouse models induces a robust Th17 response in nasal-associated lymphoid tissue (NALT).
View Article and Find Full Text PDFThe response to osmotic stress is a highly conserved process for adapting to changing environmental conditions. Prior studies have shown that hyperosmolarity by addition of sorbitol to the growth medium is sufficient to increase both chronological and replicative lifespan in the budding yeast, Saccharomyces cerevisiae. Here we report a similar phenomenon in the nematode Caenorhabditis elegans.
View Article and Find Full Text PDFMany genes that affect replicative lifespan (RLS) in the budding yeast Saccharomyces cerevisiae also affect aging in other organisms such as C. elegans and M. musculus.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2015
In the aged brain, synaptic plasticity and memory show increased vulnerability to impairment by the inflammatory cytokine interleukin 1β (IL-1β). In this study, we evaluated the possibility that synapses may directly undergo maladaptive changes with age that augment sensitivity to IL-1β impairment. In hippocampal neuronal cultures, IL-1β increased the expression of the IL-1 receptor type 1 and the accessory coreceptor AcP (proinflammatory), but not of the AcPb (prosurvival) subunit, a reconfiguration that potentiates the responsiveness of neurons to IL-1β.
View Article and Find Full Text PDFTelomeres protect the ends of linear genomes, and the gradual loss of telomeres is associated with cellular ageing. Telomere protection involves the insertion of the 3' overhang facilitated by telomere repeat-binding factor 2 (TRF2) into telomeric DNA, forming t-loops. We present evidence suggesting that t-loops can also form at interstitial telomeric sequences in a TRF2-dependent manner, forming an interstitial t-loop (ITL).
View Article and Find Full Text PDFThe mammalian target of rapamycin (mTOR) pathway has multiple important physiological functions, including regulation of protein synthesis, cell growth, autophagy, and synaptic plasticity. Activation of mTOR is necessary for the many beneficial effects of brain-derived neurotrophic factor (BDNF), including dendritic translation and memory formation in the hippocampus. At present, however, the role of mTOR in BDNF's support of survival is not clear.
View Article and Find Full Text PDFEvolving evidence suggests that brain inflammation and the buildup of proinflammatory cytokine increases the risk for cognitive decline and cognitive dysfunction. Interleukin-1β (IL-1β), acting via poorly understood mechanisms, appears to be a key cytokine in causing these deleterious effects along with a presumably related loss of long-term potentiation (LTP)-type synaptic plasticity. We hypothesized that IL-1β disrupts brain-derived neurotrophic factor (BDNF) signaling cascades and thereby impairs the formation of filamentous actin (F-actin) in dendritic spines, an event that is essential for the stabilization of LTP.
View Article and Find Full Text PDFNeurosci Bull
February 2012
Death-mediating proteases such as caspases and caspase-3 in particular, have been implicated in neurodegenerative processes, aging and Alzheimer's disease. However, emerging evidence suggests that in addition to their classical role in cell death, caspases play a key role in modulating synaptic function. It is remarkable that active caspases-3, which can trigger widespread damage and degeneration, aggregates in structures as delicate as synapses and persists in neurons without causing acute cell death.
View Article and Find Full Text PDFRegions of heterochromatin are often found at the periphery of the mammalian nucleus, juxtaposed to the nuclear lamina. Genes in these regions are likely maintained in a transcriptionally silent state, although other locations at the nuclear periphery associated with nuclear pores are sites of active transcription. As primary components of the nuclear lamina, A- and B-type nuclear lamins are intermediate filament proteins that interact with DNA, histones and known transcriptional repressors, leading to speculation that they may promote establishment of repressive domains.
View Article and Find Full Text PDFBackground: Dietary restriction (DR) increases life span and delays age-associated disease in many organisms. The mechanism by which DR enhances longevity is not well understood.
Results: Using bacterial food deprivation as a means of DR in C.
Studies in invertebrate model organisms have been a driving force in aging research, leading to the identification of many genes that influence life span. Few of these genes have been examined in the context of mammalian aging, however, and it remains an open question as to whether and to what extent the pathways that modulate longevity are conserved across different eukaryotic species. Using a comparative functional genomics approach, we have performed the first quantitative analysis of the degree to which longevity genes are conserved between two highly divergent eukaryotic species, the yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans.
View Article and Find Full Text PDF