Publications by authors named "Eric Block"

We report the first syntheses-from commercially available 3-chloro-2-fluoroprop-1-ene ()-of key garlic-derived compounds containing sp-fluorine. We also report synthesis of fluoro-5,6-dihydrothiopyrans by trapping 2-fluorothioacrolein (). Thus, difluoroallicin (, -(2-fluoro-2-propenyl) 2-fluoroprop-2-ene-1-sulfinothioate) is prepared by peracid oxidation of 1,2-bis(2-fluoro-2-propenyl)disulfane ().

View Article and Find Full Text PDF

The Journal retracts the article "Fluorinated Analogs of Organosulfur Compounds from Garlic (): Synthesis, Chemistry and Anti-Angiogenesis and Antithrombotic Studies" [...

View Article and Find Full Text PDF

Re-examination of the claimed isolation and X-ray characterization of di--tolyl and dimesityl 1,2-disulfoxides from thermolysis of the corresponding aryl sulfinimines and thiosulfinates showed that the isolated disulfide dioxides are instead the well-known isomeric thiosulfonates, as confirmed by XAS, DART-MS, X-ray, IR and NMR methods. Concerns with the original X-ray structures are addressed. Our results agree with the DFT prediction of very weak diaryl 1,2-disulfoxide S-S bond dissociation enthalpies.

View Article and Find Full Text PDF

Allicin is the main flavour component of crushed raw garlic. This plant defence molecule has strong antibiotic properties. While measurements in the liquid phase using LC-MS are established, accessing reactive organosulfur compounds in the gas phase is still a challenge due to heat-degradation in the gas chromatograph.

View Article and Find Full Text PDF

Understanding how genes and experience work in concert to generate phenotypic variability will provide a better understanding of individuality. Here, we considered this in the main olfactory epithelium, a chemosensory structure with over a thousand distinct cell types in mice. We identified a subpopulation of olfactory sensory neurons, defined by receptor expression, whose abundances were sexually dimorphic.

View Article and Find Full Text PDF

Sulfur-containing compounds within a physiological relevant, natural odor space, such as the key food odorants, typically constitute the group of volatiles with the lowest odor thresholds. The observation that certain metals, such as copper, potentiate the smell of sulfur-containing, metal-coordinating odorants led to the hypothesis that their cognate receptors are metalloproteins. However, experimental evidence is sparse-so far, only one human odorant receptor, OR2T11, and a few mouse receptors, have been reported to be activated by sulfur-containing odorants in a copper-dependent way, while the activation of other receptors by sulfur-containing odorants did not depend on the presence of metals.

View Article and Find Full Text PDF

Humans have 396 unique, intact olfactory receptors (ORs), G-protein coupled receptors (GPCRs) containing receptor-specific binding sites; other mammals have more. Activation of these transmembrane proteins by an odorant initiates a signaling cascade, evoking an action potential leading to perception of a smell. Because the number of distinguishable odorants vastly exceeds the number of ORs, research has focused on mechanisms of recognition and signaling processes for classes of odorants.

View Article and Find Full Text PDF

Stereoisomers of 5-(2-allylsulfinyl)-3,4-dimethylthiolane-2-ol, a family of 3,4-dimethylthiolanes of formula CHOS we name ajothiolanes, were isolated from garlic ( Allium sativum) macerates and characterized by a variety of analytical and spectroscopic techniques, including ultraperformance liquid chromatography (UPLC), direct analysis in real time-mass spectrometry (DART-MS), and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Ajothiolanes were found to be spectroscopically identical to a family of previously described compounds named garlicnins B (CHOS), whose structures we demonstrate have been misassigned. 2D C-C NMR incredible natural abundance double quantum transfer experiments (INADEQUATE) were used to disprove the claim of nine contiguous carbons in these compounds, while X-ray absorption spectroscopy (XAS) along with computational modeling was used to disprove the claim that these compounds were thiolanesulfenic acids.

View Article and Find Full Text PDF

Metal-coordinating compounds are generally known to have strong smells, a phenomenon that can be attributed to the fact that odorant receptors for intense-smelling compounds, such as those containing sulfur, may be metalloproteins. We previously identified a mouse odorant receptor (OR), Olfr1509, that requires copper ions for sensitive detection of a series of metal-coordinating odorants, including (methylthio)methanethiol (MTMT), a strong-smelling component of male mouse urine that attracts female mice. By combining mutagenesis and quantum mechanics/molecular mechanics (QM/MM) modeling, we identified candidate binding sites in Olfr1509 that may bind to the copper-MTMT complex.

View Article and Find Full Text PDF

Understanding olfaction at the molecular level is challenging due to the lack of crystallographic models of odorant receptors (ORs). To better understand the molecular mechanism of OR activation, we focused on chiral ()-muscone and other musk-smelling odorants due to their great importance and widespread use in perfumery and traditional medicine, as well as environmental concerns associated with bioaccumulation of musks with estrogenic/antiestrogenic properties. We experimentally and computationally examined the activation of human receptors OR5AN1 and OR1A1, recently identified as specifically responding to musk compounds.

View Article and Find Full Text PDF

We describe the synthesis, reactivity, and antithrombotic and anti-angiogenesis activity of difluoroallicin (-(2-fluoroallyl) 2-fluoroprop-2-ene-1-sulfinothioate) and -2-fluoro-2-propenyl-l-cysteine, both easily prepared from commercially available 3-chloro-2-fluoroprop-1-ene, as well as the synthesis of 1,2-bis(2-fluoroallyl)disulfane, 5-fluoro-3-(1-fluorovinyl)-3,4-dihydro-1,2-dithiin, trifluoroajoene ((,)-1-(2-fluoro-3-((2-fluoroallyl)sulfinyl)prop-1-en-1-yl)-2-(2-fluoroallyl)disulfane), and a bis(2-fluoroallyl)polysulfane mixture. All tested organosulfur compounds demonstrated effective inhibition of either FGF or VEG-mediated angiogenesis (anti-angiogenesis activity) in the chick chorioallantoic membrane (CAM) or the mouse Matrigel models. No embryo mortality was observed.

View Article and Find Full Text PDF

Sulfur-based thiyl radicals are known to be involved in a wide range of chemical and biological processes, but they are often highly reactive, which makes them difficult to observe directly. We report herein X-ray absorption spectra and analysis that support the direct observation of two different thiyl species generated photochemically by X-ray irradiation. The thiyl radical sulfur K-edge X-ray absorption spectra of both species are characterized by a uniquely low energy transition at about 2465 eV, which occurs at a lower energy than any previously observed feature at the sulfur K-edge and corresponds to a 1s→3p transition to the singly occupied molecular orbital of the free radical.

View Article and Find Full Text PDF

Covering: up to the end of 2017While suggestions concerning the possible role of metals in olfaction and taste date back 50 years, only recently has it been possible to confirm these proposals with experiments involving individual olfactory receptors (ORs). A detailed discussion of recent experimental results demonstrating the key role of metals in enhancing the response of human and other vertebrate ORs to specific odorants is presented against the backdrop of our knowledge of how the sense of smell functions both at the molecular and whole animal levels. This review emphasizes the role of metals in the detection of low molecular weight thiols, sulfides, and other organosulfur compounds, including those found in strong-smelling animal excretions and plant volatiles, and those used in gas odorization.

View Article and Find Full Text PDF

Mammalian survival depends on ultrasensitive olfactory detection of volatile sulfur compounds, since these compounds can signal the presence of rancid food, O depleted atmospheres, and predators (through carnivore excretions). Skunks exploit this sensitivity with their noxious spray. In commerce, natural and liquefied gases are odorized with t-BuSH and EtSH, respectively, as warnings.

View Article and Find Full Text PDF

Trifluoroselenomethionine (TFSeM), a new unnatural amino acid, was synthesized in seven steps from N-(tert-butoxycarbonyl)-l-aspartic acid tert-butyl ester. TFSeM shows enhanced methioninase-induced cytotoxicity, relative to selenomethionine (SeM), toward HCT-116 cells derived from human colon cancer. Mechanistic explanations for this enhanced activity are computationally and experimentally examined.

View Article and Find Full Text PDF

The vibrational theory of olfaction assumes that electron transfer occurs across odorants at the active sites of odorant receptors (ORs), serving as a sensitive measure of odorant vibrational frequencies, ultimately leading to olfactory perception. A previous study reported that human subjects differentiated hydrogen/deuterium isotopomers (isomers with isotopic atoms) of the musk compound cyclopentadecanone as evidence supporting the theory. Here, we find no evidence for such differentiation at the molecular level.

View Article and Find Full Text PDF

Understanding structure/function relationships of olfactory receptors is challenging due to the lack of x-ray structural models. Here, we introduce a QM/MM model of the mouse olfactory receptor MOR244-3, responsive to organosulfur odorants such as (methylthio)methanethiol. The binding site consists of a copper ion bound to the heteroatoms of amino-acid residues H105, C109, and N202.

View Article and Find Full Text PDF

Odorant receptors (ORs) in olfactory sensory neurons (OSNs) mediate detection of volatile odorants. Divalent sulfur compounds, such as thiols and thioethers, are extremely potent odorants. We identify a mouse OR, MOR244-3, robustly responding to (methylthio)methanethiol (MeSCH(2)SH; MTMT) in heterologous cells.

View Article and Find Full Text PDF

The microwave spectrum for N-hydroxypyridine-2(1H)-thione (pyrithione) was measured in the frequency range 6-18 GHz, providing accurate rotational constants and nitrogen quadrupole coupling strengths for three isotopologues, C(5)H(4)(32)S(14)NOH, C(5)H(4)(32)S(14)NOD, and C(5)H(4)(34)S(14)NOH. Pyrithione was found to be in a higher concentration in the gas phase than the other tautomer, 2-mercaptopyridine-N-oxide (MPO). Microwave spectroscopy is best suited to determine which structure predominates in the gas phase.

View Article and Find Full Text PDF

BACKGROUND AND PURPOSE: Adenosine, an endogenous purine nucleoside, is a potent regulator of the inflammatory response and stimulus for fibrosis. We have previously demonstrated that adenosine, acting at the A2A receptor, plays a central role in hepatic fibrosis via direct promotion of collagen production by hepatic stellate cells. As we have previously demonstrated that macrophage A2A receptor function is regulated by interferon-gamma (IFNγ), a noted antifibrotic but pro-inflammatory cytokine, we examined its effect on A2AR-stimulated collagen production in the human hepatic stellate cell line LX-2.

View Article and Find Full Text PDF

Through the use of direct analysis in real time mass spectrometry (DART-MS), 2-propenesulfenic acid, an intermediate long postulated as being formed when garlic ( Allium sativum ) is crushed, has been detected for the first time and determined by mass spectrometric methods to have a half-life of <1 s at room temperature. Two other key intermediates, 2-propenesulfinic acid and diallyl trisulfane S-oxide, have also been detected for the first time in volatiles from crushed garlic, along with allicin and related thiosulfinates, allyl alcohol, sulfur dioxide, propene, and pyruvate as coproducts. A commercial dietary supplement containing garlic powder, which was sampled after crushing, was found to contain alliin, methiin, and S-allylcysteine and produced allicin upon addition of water.

View Article and Find Full Text PDF

The diverse electrochemical and chemical oxidations of dichalcogena-mesocycles are analyzed, broadening our understanding of the chemistry of the corresponding radical cations and dications. 1,5-Diselenocane and 1,5-ditellurocane undergo reversible two-electron oxidation with inverted potentials analogous to 1,5-dithiocane. On the other hand, 1,5-selenathiocane and 1,5-tellurathiocane undergo one-electron oxidative dimerization.

View Article and Find Full Text PDF

Lachrymatory (Z)-butanethial S-oxide along with several 1-butenyl thiosulfinates was detected by DART mass spectrometry upon cutting Allium siculum , a popular ornamental Allium species used in some cultures as a spice. (Z)-Butanethial S-oxide isolated from the plant was shown to be identical to a synthetic sample. Its likely precursor, (R(S),R(C),E)-S-(1-butenyl)cysteine S-oxide (homoisoalliin), was isolated from homogenates of A.

View Article and Find Full Text PDF