Publications by authors named "Eric Billy"

Article Synopsis
  • There are strict laws for clinical research, but many authors and editors don't always follow them correctly.
  • An investigation looked at 456 studies from a hospital in France and found lots of problems with how they reported their ethics approvals.
  • Researchers want better checks from scientific editors and publishers to make sure that ethical rules are followed in research.
View Article and Find Full Text PDF

Recently, an article by Seneff et al. entitled "Innate immunosuppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs" was published in Food and Chemical Toxicology (FCT). Here, we describe why this article, which contains unsubstantiated claims and misunderstandings such as "billions of lives are potentially at risk" with COVID-19 mRNA vaccines, is problematic and should be retracted.

View Article and Find Full Text PDF

In the last decade Open Science principles have been successfully advocated for and are being slowly adopted in different research communities. In response to the COVID-19 pandemic many publishers and researchers have sped up their adoption of Open Science practices, sometimes embracing them fully and sometimes partially or in a sub-optimal manner. In this article, we express concerns about the violation of some of the Open Science principles and its potential impact on the quality of research output.

View Article and Find Full Text PDF

The histone 3 lysine 79 (H3K79) methyltransferase (HMT) DOT1L is known to play a critical role for growth and survival of -rearranged leukemia. Serendipitous observations during high-throughput drug screens indicated that the use of DOT1L inhibitors might be expandable to multiple myeloma (MM). Through pharmacologic and genetic experiments, we could validate that DOT1L is essential for growth and viability of a subset of MM cell lines, in line with a recent report from another team.

View Article and Find Full Text PDF

FGFR1 was recently shown to be activated as part of a compensatory response to prolonged treatment with the MEK inhibitor trametinib in several KRAS-mutant lung and pancreatic cancer cell lines. We hypothesize that other receptor tyrosine kinases (RTK) are also feedback-activated in this context. Herein, we profile a large panel of KRAS-mutant cancer cell lines for the contribution of RTKs to the feedback activation of phospho-MEK following MEK inhibition, using an SHP2 inhibitor (SHP099) that blocks RAS activation mediated by multiple RTKs.

View Article and Find Full Text PDF

Cell autonomous cancer dependencies are now routinely identified using CRISPR loss-of-function viability screens. However, a bias exists that makes it difficult to assess the true essentiality of genes located in amplicons, since the entire amplified region can exhibit lethal scores. These false-positive hits can either be discarded from further analysis, which in cancer models can represent a significant number of hits, or methods can be developed to rescue the true-positives within amplified regions.

View Article and Find Full Text PDF

Elucidation of the mutational landscape of human cancer has progressed rapidly and been accompanied by the development of therapeutics targeting mutant oncogenes. However, a comprehensive mapping of cancer dependencies has lagged behind and the discovery of therapeutic targets for counteracting tumor suppressor gene loss is needed. To identify vulnerabilities relevant to specific cancer subtypes, we conducted a large-scale RNAi screen in which viability effects of mRNA knockdown were assessed for 7,837 genes using an average of 20 shRNAs per gene in 398 cancer cell lines.

View Article and Find Full Text PDF

Unlabelled: CRISPR/Cas9 has emerged as a powerful new tool to systematically probe gene function. We compared the performance of CRISPR to RNAi-based loss-of-function screens for the identification of cancer dependencies across multiple cancer cell lines. CRISPR dropout screens consistently identified more lethal genes than RNAi, implying that the identification of many cellular dependencies may require full gene inactivation.

View Article and Find Full Text PDF

5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA-mediated screen across 390 cancer cell line models, we found that the viability of MTAP-deficient cancer cells is impaired by depletion of the protein arginine methyltransferase PRMT5.

View Article and Find Full Text PDF

The introduction of MAPK pathway inhibitors paved the road for significant advancements in the treatment of BRAF-mutant (BRAF(MUT)) melanoma. However, even BRAF/MEK inhibitor combination therapy has failed to offer a curative treatment option, most likely because these pathways constitute a codependent signaling network. Concomitant PTEN loss of function (PTEN(LOF)) occurs in approximately 40% of BRAF(MUT) melanomas.

View Article and Find Full Text PDF

The Hippo (Hpo) pathway is a novel signaling pathway that controls organ size in Drosophila and mammals and is deregulated in a variety of human cancers. It consists of a set of kinases that, through a number of phosphorylation events, inactivate YAP, a transcriptional co-activator that controls cellular proliferation and apoptosis. We have identified PTPN14 as a YAP-binding protein that negatively regulates YAP activity by controlling its localization.

View Article and Find Full Text PDF
Article Synopsis
  • GPR4 is a G protein-coupled receptor that responds to acidic pH and is expressed in endothelial cells, correlating with endothelial marker genes.
  • GPR4-deficient mice are viable but exhibit a significantly reduced angiogenic response to VEGF without affecting their response to bFGF, indicating a specific role for GPR4 in VEGF-mediated angiogenesis.
  • In tumor models, GPR4 deficiency leads to reduced tumor growth, lower VEGFR2 levels in endothelial cells, and changes in tumor cell proliferation and blood vessel characteristics.
View Article and Find Full Text PDF

EphB4 and its cognitive ligand ephrinB2 play an important role in embryonic vessel development and vascular remodeling. In addition, several reports suggest that this receptor ligand pair is also involved in pathologic vessel formation in adults including tumor angiogenesis. Eph/ephrin signaling is a complex phenomena characterized by receptor forward signaling through the tyrosine kinase of the receptor and ephrin reverse signaling through various protein-protein interaction domains and phosphorylation motifs of the ephrin ligands.

View Article and Find Full Text PDF

FTY720, a potent immunomodulator, becomes phosphorylated in vivo (FTY-P) and interacts with sphingosine-1-phosphate (S1P) receptors. Recent studies showed that FTY-P affects vascular endothelial growth factor (VEGF)-induced vascular permeability, an important aspect of angiogenesis. We show here that FTY720 has antiangiogenic activity, potently abrogating VEGF- and S1P-induced angiogenesis in vivo in growth factor implant and corneal models.

View Article and Find Full Text PDF

Dicer is a multi-domain RNase III-related endonuclease responsible for processing double-stranded RNA (dsRNA) to small interfering RNAs (siRNAs) during a process of RNA interference (RNAi). It also catalyses excision of the regulatory microRNAs from their precursors. In this work, we describe the purification and properties of a recombinant human Dicer.

View Article and Find Full Text PDF