Publications by authors named "Eric A Assaf"

The reduction of CO to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy-dense liquid fuels such as methanol remains rare, particularly under low-temperature and low-pressure conditions that can be coupled to renewable electricity sources via electrochemistry. Here, a multicatalyst system pairing an electrocatalyst with a thermal organometallic catalyst is introduced, which enables the reduction of CO to methanol at ambient temperature and pressure.

View Article and Find Full Text PDF

Comparative kinetic studies of a series of new ruthenium complexes provide a platform for understanding how strong effect ligands and redox-active ligands work together to enable rapid electrochemical CO reduction at moderate overpotential. After synthesizing isomeric pairs of ruthenium complexes featuring 2'-picolinyl-methyl-benzimidazol-2-ylidene (Mebim-pic) as a strong effect ligand and 2,2':6',2″-terpyridine (tpy) as a redox-active ligand, chemical and electrochemical kinetic studies examined how complex geometry and charge affect the individual steps and overall catalysis of CO reduction. The relative effect of picoline vs the N-heterocyclic carbene (NHC) was quantified through a kinetic analysis of reductively triggered chloride dissociation, revealing that chloride loss is 1000 times faster in the isomer with the NHC to chloride.

View Article and Find Full Text PDF