Publications by authors named "Benjamin D Travis"

The hydricity (ΔG°), or hydride donor ability, of a transition metal complex is a thermodynamic parameter which can aid in the design and interpretation of various catalytic reactions that involve hydride transfer as a key step. In an attempt to generate a strong hydride donor, the bis-carbene ligand 3,3'-methylenebis(1-methyl-imidazol-2-ylidene) ("bis-mim") was installed in an iridium hydride complex, [Cp*Ir(bis-mim)H]. Experimental and computational studies show that [Cp*Ir(bis-mim)H] is actually a relatively weak hydride donor, however.

View Article and Find Full Text PDF

The reduction of CO to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy-dense liquid fuels such as methanol remains rare, particularly under low-temperature and low-pressure conditions that can be coupled to renewable electricity sources via electrochemistry. Here, a multicatalyst system pairing an electrocatalyst with a thermal organometallic catalyst is introduced, which enables the reduction of CO to methanol at ambient temperature and pressure.

View Article and Find Full Text PDF

A series of homogeneous Fe(iii) complexes were recently reported that are active for electrocatalytic hydrogen generation. Herein we report a naphthalene-terminated Fe(iii) complex for use in the functionalization of glassy carbon surfaces for electrocatalytic hydrogen generation with retention of catalytic activity.

View Article and Find Full Text PDF