Publications by authors named "Emmanuel Barillot"

Spatial transcriptomics is a powerful method for studying the spatial organization of cells, which is a critical feature in the development, function and evolution of multicellular life. However, sequencing-based spatial transcriptomics has not yet achieved cellular-level resolution, so advanced deconvolution methods are needed to infer cell-type contributions at each location in the data. Recent progress has led to diverse tools for cell-type deconvolution that are helping to describe tissue architectures in health and disease.

View Article and Find Full Text PDF

Immunotherapy is improving the survival of patients with metastatic non-small cell lung cancer (NSCLC), yet reliable biomarkers are needed to identify responders prospectively and optimize patient care. In this study, we explore the benefits of multimodal approaches to predict immunotherapy outcome using multiple machine learning algorithms and integration strategies. We analyze baseline multimodal data from a cohort of 317 metastatic NSCLC patients treated with first-line immunotherapy, including positron emission tomography images, digitized pathological slides, bulk transcriptomic profiles, and clinical information.

View Article and Find Full Text PDF

Multiscale models provide a unique tool for analyzing complex processes that study events occurring at different scales across space and time. In the context of biological systems, such models can simulate mechanisms happening at the intracellular level such as signaling, and at the extracellular level where cells communicate and coordinate with other cells. These models aim to understand the impact of genetic or environmental deregulation observed in complex diseases, describe the interplay between a pathological tissue and the immune system, and suggest strategies to revert the diseased phenotypes.

View Article and Find Full Text PDF

Multiscale models provide a unique tool for studying complex processes that study events occurring at different scales across space and time. In the context of biological systems, such models can simulate mechanisms happening at the intracellular level such as signaling, and at the extracellular level where cells communicate and coordinate with other cells. They aim to understand the impact of genetic or environmental deregulation observed in complex diseases, describe the interplay between a pathological tissue and the immune system, and suggest strategies to revert the diseased phenotypes.

View Article and Find Full Text PDF

Background: Computational models in systems biology are becoming more important with the advancement of experimental techniques to query the mechanistic details responsible for leading to phenotypes of interest. In particular, Boolean models are well fit to describe the complexity of signaling networks while being simple enough to scale to a very large number of components. With the advance of Boolean model inference techniques, the field is transforming from an artisanal way of building models of moderate size to a more automatized one, leading to very large models.

View Article and Find Full Text PDF

Topic modeling is a popular technique in machine learning and natural language processing, where a corpus of text documents is classified into themes or topics using word frequency analysis. This approach has proven successful in various biological data analysis applications, such as predicting cancer subtypes with high accuracy and identifying genes, enhancers, and stable cell types simultaneously from sparse single-cell epigenomics data. The advantage of using a topic model is that it not only serves as a clustering algorithm, but it can also explain clustering results by providing word probability distributions over topics.

View Article and Find Full Text PDF

Introduction: The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing.

Methods: Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms.

View Article and Find Full Text PDF

In systems biology, mathematical models and simulations play a crucial role in understanding complex biological systems. Different modelling frameworks are employed depending on the nature and scales of the system under study. For instance, signalling and regulatory networks can be simulated using Boolean modelling, whereas multicellular systems can be studied using agent-based modelling.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers created a model that helps us understand how cancer cells invade other areas by looking at how they interact with each other and their surroundings.
  • The model uses a mix of techniques to simulate cell movement and can predict ways to stop these cells from spreading.
  • It shows both detailed 2D and 3D pictures of the invasion process and is based on real experiments, helping scientists find new targets for treatment.
View Article and Find Full Text PDF

As a result of the development of experimental technologies and the accumulation of data, biological and molecular processes can be described as complex networks of signaling pathways. These networks are often directed and signed, where nodes represent entities (genes/proteins) and arrows interactions. They are translated into mathematical models by adding a dynamic layer onto them.

View Article and Find Full Text PDF

Summary: We developed BIODICA, an integrated computational environment for application of independent component analysis (ICA) to bulk and single-cell molecular profiles, interpretation of the results in terms of biological functions and correlation with metadata. The computational core is the novel Python package stabilized-ica which provides interface to several ICA algorithms, a stabilization procedure, meta-analysis and component interpretation tools. BIODICA is equipped with a user-friendly graphical user interface, allowing non-experienced users to perform the ICA-based omics data analysis.

View Article and Find Full Text PDF

Mathematical modeling aims at understanding the effects of biological perturbations, suggesting ways to intervene and to reestablish proper cell functioning in diseases such as cancer or in autoimmune disorders. This is a difficult task for obvious reasons: the level of details needed to describe the intra-cellular processes involved, the numerous interactions between cells and cell types, and the complex dynamical properties of such populations where cells die, divide and interact constantly, to cite a few. Another important difficulty comes from the spatial distribution of these cells, their diffusion and motility.

View Article and Find Full Text PDF

Cell cycle is a biological process underlying the existence and propagation of life in time and space. It has been an object for mathematical modeling for long, with several alternative mechanistic modeling principles suggested, describing in more or less details the known molecular mechanisms. Recently, cell cycle has been investigated at single cell level in snapshots of unsynchronized cell populations, exploiting the new methods for transcriptomic and proteomic molecular profiling.

View Article and Find Full Text PDF

Prostate cancer is the second most occurring cancer in men worldwide. To better understand the mechanisms of tumorigenesis and possible treatment responses, we developed a mathematical model of prostate cancer which considers the major signalling pathways known to be deregulated. We personalised this Boolean model to molecular data to reflect the heterogeneity and specific response to perturbations of cancer patients.

View Article and Find Full Text PDF

WebMaBoSS is an easy-to-use web interface for conversion, storage, simulation and analysis of Boolean models that allows to get insight from these models without any specific knowledge of modeling or coding. It relies on an existing software, MaBoSS, which simulates Boolean models using a stochastic approach: it applies continuous time Markov processes over the Boolean network. It was initially built to fill the gap between Boolean and continuous formalisms, i.

View Article and Find Full Text PDF

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources.

View Article and Find Full Text PDF
Article Synopsis
  • Retinoblastoma is the most common eye cancer in children, originating from developing retinal cells, but its molecular behavior is not well understood.* -
  • Researchers identified two distinct subtypes of retinoblastoma: Subtype 1 is characterized by early onset and less genetic alteration, while Subtype 2 has recurrent genetic changes, is less differentiated, and has a higher likelihood of spreading.* -
  • Understanding these two subtypes can offer new insights into the biology and treatment of retinoblastoma, with subtype 1 being less aggressive and subtype 2 showing more aggressive traits and stem cell-like features.*
View Article and Find Full Text PDF

The identification of miRNAs' targets and associated regulatory networks might allow the definition of new strategies using drugs whose association mimics a given miRNA's effects. Based on this assumption we devised a multi-omics approach to precisely characterize miRNAs' effects. We combined miR-491-5p target affinity purification, RNA microarray, and mass spectrometry to perform an integrated analysis in ovarian cancer cell lines.

View Article and Find Full Text PDF

The study of response to cancer treatments has benefited greatly from the contribution of different omics data but their interpretation is sometimes difficult. Some mathematical models based on prior biological knowledge of signaling pathways facilitate this interpretation but often require fitting of their parameters using perturbation data. We propose a more qualitative mechanistic approach, based on logical formalism and on the sole mapping and interpretation of omics data, and able to recover differences in sensitivity to gene inhibition without model training.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers linked over 180 SNPs to breast cancer risk through extensive genome studies, particularly affecting women without BRCA1/2 mutations.
  • The study analyzed genetic data from 1281 breast cancer cases, their sisters, and a control group to identify significant genes and pathways related to breast cancer risk.
  • Although the newly developed polygenic risk scores (PRS) showed better predictive performance than traditional methods, they were still not highly predictive for the general population, emphasizing the importance of family history in risk assessments.
View Article and Find Full Text PDF

Multidimensional datapoint clouds representing large datasets are frequently characterized by non-trivial low-dimensional geometry and topology which can be recovered by unsupervised machine learning approaches, in particular, by principal graphs. Principal graphs approximate the multivariate data by a graph injected into the data space with some constraints imposed on the node mapping. Here we present ElPiGraph, a scalable and robust method for constructing principal graphs.

View Article and Find Full Text PDF