Publications by authors named "Emanuel Candeias"

The development of novel and eco-friendly wound dressings using biopolymers faces challenges related to their processing/sterilisation. Supercritical CO (scCO) drying represents an efficient and sustainable solution, by enabling the production of sterilised materials with high surface area/porosity while preserving essential properties. This study introduces a novel integrated process for developing sterile chitosan (CS) aerogels crosslinked with tripolyphosphate (TPP) and polyvinyl alcohol (PVA).

View Article and Find Full Text PDF

Background: In Parkinson's patients, intestinal dysbiosis can occur years before clinical diagnosis, implicating the gut and its microbiota in the disease. Recent evidence suggests the gut microbiota may trigger body-first Parkinson Disease (PD), yet the underlying mechanisms remain unclear. This study aims to elucidate how a dysbiotic microbiome through intestinal immune alterations triggers PD-related neurodegeneration.

View Article and Find Full Text PDF

Accumulating evidence suggests that gut inflammation is implicated in neuroinflammation in Alzheimer's and Parkinson's diseases. Despite the numerous connections it remains unclear how the gut and the brain communicate and whether gut dysbiosis is the cause or consequence of these pathologies. Importantly, several reports highlight the importance of mitochondria in the gut-brain axis, as well as in mechanisms like gut epithelium self-renewal, differentiation, and homeostasis.

View Article and Find Full Text PDF

The microbial toxin β-N-methylamino-L-alanine (BMAA), which is derived from cyanobacteria, targets neuronal mitochondria, leading to the activation of neuronal innate immunity and, consequently, neurodegeneration. Although known to modulate brain inflammation, the precise role of aberrant microglial function in the neurodegenerative process remains elusive. To determine if neurons signal microglial cells, we treated primary cortical neurons with BMAA and then co-cultured them with the N9 microglial cell line.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder with an unknown cause. Recent research has highlighted the importance of the gut in neuronal and immune maturation through the exchange of nutrients and cellular signals. This has led to the "gut-first PD" hypothesis, which aims to explain many of the sporadic cases and their prodromal intestinal symptoms, such as constipation and intestinal α-synuclein (aSyn) aggregation.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a multifactorial neurodegenerative disease characterized by the loss of dopaminergic neurons in the midbrain. In the prodromal phase several autonomic symptoms including orthostatic hypotension and constipation are correlated with increased α-synuclein pathology in peripheral tissues. It is currently accepted that some idiopathic PD cases may start in the gut (body-first PD) with accumulation of pathological α-synuclein in enteric neurons that may subsequently propagate caudo-rostrally to the central nervous system.

View Article and Find Full Text PDF

Sporadic Parkinson's disease (sPD) is a complex multifactorial disorder which etiology remains elusive. Several mechanisms have been described to contribute to PD development namely mitochondrial dysfunction, activation of inflammatory pathways and the deposition of unfolded proteins such as α-synuclein. Our work shows for the first time that lipopolysaccharide (LPS)-induced activation of innate immunity requires a functional mitochondria and mimics PD pathology in cells.

View Article and Find Full Text PDF

Mitochondria play a key role in regulating host metabolism, immunity and cellular homeostasis. Remarkably, these organelles are proposed to have evolved from an endosymbiotic association between an alphaproteobacterium and a primitive eukaryotic host cell or an archaeon. This crucial event determined that human cell mitochondria share some features with bacteria, namely cardiolipin, N-formyl peptides, mtDNA and transcription factor A, that can act as mitochondrial-derived damage-associated molecular patterns (DAMPs).

View Article and Find Full Text PDF

Diabetes mellitus type 2 (T2DM) has been associated with alterations in the male reproductive tract, especially in the epididymis. Although it is known that T2DM alters epididymal physiology, disturbing mitochondrial function and favoring oxidative stress, the mechanisms remain unknown. Sirtuin 1 (SIRT1), peroxisome proliferators-activated receptor γ coactivator 1α (PGC-1α), and sirtuin 3 (SIRT3) are key regulators of mitochondrial function and inducers of antioxidant defenses.

View Article and Find Full Text PDF

Objective: Idiopathic Parkinson's disease (PD) is characterised by alpha-synuclein (aSyn) aggregation and death of dopaminergic neurons in the midbrain. Recent evidence posits that PD may initiate in the gut by microbes or their toxins that promote chronic gut inflammation that will ultimately impact the brain. In this work, we sought to demonstrate that the effects of the microbial toxin β--methylamino-L-alanine (BMAA) in the gut may trigger some PD cases, which is especially worrying as this toxin is present in certain foods but not routinely monitored by public health authorities.

View Article and Find Full Text PDF

Background: After decades of research recognizing it as a complex multifactorial disorder, sporadic Alzheimer's disease (sAD) still has no known etiology. Adding to the myriad of different pathways involved, bacterial neurotoxins are assuming greater importance in the etiology and/or progression of sAD. β-N-Methylamino-L-alanine (BMAA), a neurotoxin produced by some microorganisms namely cyanobacteria, was previously detected in the brains of AD patients.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how type 2 diabetes (T2D) affects the nigrostriatal dopaminergic system (NDS), which is crucial for motor control and may increase the risk of Parkinson's disease in diabetics.
  • It was found that while T2D did not change overall dopamine levels in the brain, it did reduce the ability to stimulate dopamine release in response to activities.
  • Two anti-T2D drugs, DPP-4 inhibitors and sulfonylureas, were effective in preventing these impairments, with DPP-4 inhibitors also showing potential benefits in reversing age-related cellular changes in the brain.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia worldwide, being characterized by the deposition of senile plaques, neurofibrillary tangles (enriched in the amyloid beta (Aβ) peptide and hyperphosphorylated tau (p-tau), respectively) and memory loss. Aging, type 2 diabetes (T2D) and female sex (especially after menopause) are risk factors for AD, but their crosslinking mechanisms remain unclear. Most clinical trials targeting AD neuropathology failed and it remains incurable.

View Article and Find Full Text PDF

Research on neurodegenerative brain disorders, namely the age-dependent Alzheimer's disease (AD), has been intensified in the last decade due to the absence of a cure and the recognized increasing of life expectancy for populations. To address the multifactorial nature and complexity of AD, a multi-target-directed ligand approach was herein employed, by designing a set of six selected hybrids (⁻) that combine in the same entity two pharmacophores: tacrine (TAC) and 2-phenylbenzothiazole (PhBTA). The compounds contain a methoxy substituent at the PhBTA moiety and have a variable length linker between that and the TAC moiety.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a severe age-dependent neurodegenerative disorder affecting several million people worldwide. So far, there is no adequate medication to prevent or slow down the progression of the disease, only medication with palliative effects allowing temporary symptomatic reliefs. As part of our continuing efforts into the development of innovative drugs following a polypharmacological strategy, we decided to use a former anti-AD palliative drug (tacrine) and to reposition it by hybridization with a metal chelating drug (deferiprone, DFP).

View Article and Find Full Text PDF

A new series of multifunctional hybrids, based on the structure of the donepezil (DNP) drug, have been developed and evaluated as potential anti Alzheimer's disease (AD) agents. The rationale of this study was the conjugation of a benzylpiperidine/benzylpiperazine moiety with derivatives of bioactive heterocyclics (benzimidazole or benzofuran), to mimic the main structure of DNP and to endow the hybrids with additional relevant properties such as inhibition of amyloid beta (Aβ) peptide aggregation, antioxidant activity and metal chelation. Overall, they showed good activity for AChE inhibition (IC=4.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is a modern socioeconomic burden, mostly due to its long-term complications affecting nearly all tissues. One of them is the brain, whose dysfunctional intracellular quality control mechanisms (namely autophagy) may upregulate apoptosis, leading to cognitive dysfunction and Alzheimer disease (AD). Since impaired brain insulin signaling may constitute the crosslink between T2D and AD, its restoration may be potentially therapeutic herein.

View Article and Find Full Text PDF

Long-acting glucagon-like peptide-1 (GLP-1) analogues marketed for type 2 diabetes (T2D) treatment have been showing positive and protective effects in several different tissues, including pancreas, heart or even brain. This gut secreted hormone plays a potent insulinotropic activity and an important role in maintaining glucose homeostasis. Furthermore, growing evidences suggest the occurrence of several commonalities between T2D and neurodegenerative diseases, insulin resistance being pointed as a main cause for cognitive decline and increased risk to develop dementia.

View Article and Find Full Text PDF

Mitochondria are highly dynamic organelles involved in a multitude of cellular events. Disturbances of mitochondrial function and dynamics are associated with cells degeneration and death. Neurons, perhaps more than any other cell, depend on mitochondria for their survival.

View Article and Find Full Text PDF

Neurodegenerative diseases (e.g. Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and prion-related diseases) have in common the presence of protein aggregates in specific brain areas where significant neuronal loss is detected.

View Article and Find Full Text PDF

The integrity of mitochondrial function is essential to cell life. It follows that disturbances of mitochondrial function will lead to disruption of cell function, expressed as disease or even death. Considering that neuronal uncoupling proteins (UCPs) decrease reactive oxygen species (ROS) production at the expense of energy production, it is important to understand the underlying mechanisms by which UCPs control the balance between the production of adenosine triphosphate (ATP) and ROS in the context of normal physiological activity and in pathological conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Type 2 diabetes (T2D) and Alzheimer’s disease (AD) are interconnected health issues, with T2D affecting millions of elderly individuals and increasing the risk for AD due to shared complications.
  • Research suggests that insulin resistance, a key feature of T2D, also occurs in AD, leading to the classification of AD as "type 3 diabetes" and indicating that treatments for T2D could benefit AD patients.
  • The review focuses on the overlap in insulin signaling related to the formation of amyloid plaques and neurofibrillary tangles in AD, and discusses the potential of certain anti-T2D medications, especially GLP-1 receptor agonists, to protect against cognitive decline and dementia.
View Article and Find Full Text PDF

Brain structural and functional integrity exquisitely relies on a regular supply of oxygen. In order to circumvent the potential deleterious consequences of deficient oxygen availability, brain triggers endogenous adaptive and pro-survival mechanisms - a phenomenon known as brain hypoxic tolerance. The highly conserved hypoxia-inducible family (HIF) of transcription factors is the "headquarter" of the homeostatic response of the brain to hypoxia.

View Article and Find Full Text PDF

Alterations of the insulin signaling cascade underlie cognitive decline and the development of several neurodegenerative diseases. In recent years, a great interest has been put in studying the interaction between diabetes and Alzheimer's disease (AD). In fact, evidence shows that both diseases present several biochemical similarities including defects in the insulin signaling pathway.

View Article and Find Full Text PDF

Although the precise culprit in the etiopathogenesis of Alzheimer disease (AD) is still obscure, defective mitochondria functioning has been proposed to be an upstream event in AD. Mitochondria fulfill a number of essential cellular functions, and it is recognized that the strict regulation of the structure, function and turnover of these organelles is an immutable control node for the maintenance of neuronal and vascular homeostasis. Extensive research in postmortem brain tissue from AD subjects, and AD animal and cellular models revealed that mitochondria undergo multiple malfunctions during the course of this disease.

View Article and Find Full Text PDF