: Being overweight increases the predisposition to obesity and type 2 diabetes (T2D), which significantly elevate stroke risk and the likelihood of severe post-stroke disability. Dietary nitrate (NO) supplementation can mitigate obesity and metabolic impairments, making it a promising approach to halt overweight people from developing overt obesity/T2D, thereby potentially also improving stroke outcome. We determined whether NO3 supplementation prevents overweight mice from progressing into obesity and T2D and whether this intervention improves stroke outcome.
View Article and Find Full Text PDFBackground: Both depression and respiratory disease are common today in young populations. However, little is known about the relationship between them.
Aims: This study aims to explore the association between depression in childhood to early adulthood and respiratory health outcomes in early adulthood, and the potential underlying mechanisms.
Obesity and Type 2 diabetes (T2D) are known to exacerbate cerebral injury caused by stroke. Metabolomics can provide signatures of metabolic disease, and now we explored whether the analysis of plasma metabolites carries biomarkers of how obesity and T2D impact post-stroke recovery. Male mice were fed a high-fat diet (HFD) for 10 months leading to development of obesity with T2D or a standard diet (non-diabetic mice).
View Article and Find Full Text PDFCardiovasc Diabetol
February 2024
Type-2 diabetes (T2D) worsens stroke recovery, amplifying post-stroke disabilities. Currently, there are no therapies targeting this important clinical problem. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are potent anti-diabetic drugs that also efficiently reduce cardiovascular death and heart failure.
View Article and Find Full Text PDFType 2 diabetes (T2D) impairs post-stroke recovery, and the underlying mechanisms are unknown. Insulin resistance (IR), a T2D hallmark that is also closely linked to aging, has been associated with impaired post-stroke recovery. However, whether IR worsens stroke recovery is unknown.
View Article and Find Full Text PDFMicrovascular pathology in the brain is one of the suggested mechanisms underlying the increased incidence and progression of neurodegenerative diseases in people with type 2 diabetes (T2D). Although accumulating data suggest a neuroprotective effect of antidiabetics, the underlying mechanisms are unclear. Here, we investigated whether two clinically used antidiabetics, the dipeptidyl peptidase-4 inhibitor linagliptin and the sulfonylurea glimepiride, which restore T2D-induced brain vascular pathology.
View Article and Find Full Text PDFBackground: Post-stroke functional recovery is severely impaired by type 2 diabetes (T2D). This is an important clinical problem since T2D is one of the most common diseases. Because weight loss-based strategies have been shown to decrease stroke risk in people with T2D, we aimed to investigate whether diet-induced weight loss can also improve post-stroke functional recovery and identify some of the underlying mechanisms.
View Article and Find Full Text PDFIntroduction: The biggest risk factor for obesity and its associated comorbidities is a Western diet. This Western diet induces adipose tissue (AT) inflammation, which causes an AT dysfunction. Since AT is a vital endocrine organ, its dysfunction damages other organs, thus inducing a state of chronic inflammation and causing various comorbidities.
View Article and Find Full Text PDFObesity, caused by an excess adipose tissue, is one of the biggest health-threats of the 21 century. Adipose tissue expansion occurs through two processes: (i) hypertrophy, and (ii) hyperplasia, the formation of new adipocytes, also termed adipogenesis. Recently, serum amyloid A3 (Saa3) has been implicated in adipogenesis.
View Article and Find Full Text PDFObesity has become a global health-threat for every age group. It is well known that young mice (10-12 weeks of age) fed a western-type diet (WD) become obese and develop higher cholesterol levels and liver steatosis whereas insulin sensitivity is reduced. Less is known, however, about the effect of a WD on advanced-age mice.
View Article and Find Full Text PDFIntestinal alkaline phosphatase 3 (AKP3) is an enzyme that was reported to play a role in lipid metabolism and to prevent high fat diet-induced metabolic syndrome in mice. To investigate a potential functional role of AKP3 in diet-induced adiposity and metabolic health, we have kept male and female wild-type or AKP3 deficient mice on a high fat diet for 15 weeks to induce obesity and compared those with mice kept on standard fat diet. Body weight as well as adipose tissue mass were statistically significantly higher upon high fat diet feeding for mice of both genders and genotypes.
View Article and Find Full Text PDFBlockade of the immune checkpoint molecule programmed-cell-death-protein-1 (PD-1) yielded promising results in several cancers. To understand the therapeutic potential in human gliomas, quantitative data describing the expression of PD-1 are essential. Moreover, due the immune-specialized region of the brain in which gliomas arise, differences between tumor-infiltrating and circulating lymphocytes should be acknowledged.
View Article and Find Full Text PDF