Opportunities to directly study the founding of a human population and its subsequent evolutionary history are rare. Using genome sequence data from 27 ancient Icelanders, we demonstrate that they are a combination of Norse, Gaelic, and admixed individuals. We further show that these ancient Icelanders are markedly more similar to their source populations in Scandinavia and the British-Irish Isles than to contemporary Icelanders, who have been shaped by 1100 years of extensive genetic drift.
View Article and Find Full Text PDFA genome is a mosaic of chromosome fragments from ancestors who existed some arbitrary number of generations earlier. Here, we reconstruct the genome of Hans Jonatan (HJ), born in the Caribbean in 1784 to an enslaved African mother and European father. HJ migrated to Iceland in 1802, married and had two children.
View Article and Find Full Text PDFMutations are the fundamental source of biological variation, and their rate is a crucial parameter for evolutionary and medical studies. Here we used whole-genome sequence data from 753 Icelandic males, grouped into 274 patrilines, to estimate the point mutation rate for 21.3 Mb of male-specific Y chromosome (MSY) sequence, on the basis of 1,365 meioses (47,123 years).
View Article and Find Full Text PDFThe Philippines is a strategic point in the Asia-Pacific region for the study of human diversity, history and origins, as it is a cross-road for human migrations and consequently exhibits enormous ethnolinguistic diversity. Following on a previous in-depth study of Y-chromosome variation, here we provide new insights into the maternal genetic history of Filipino ethnolinguistic groups by surveying complete mitochondrial DNA (mtDNA) genomes from a total of 14 groups (11 groups in this study and 3 groups previously published) including previously published mtDNA hypervariable segment (HVS) data from Filipino regional center groups. Comparison of HVS data indicate genetic differences between ethnolinguistic and regional center groups.
View Article and Find Full Text PDFGenetic differences between human populations are typically larger for the Y-chromosome than for mitochondrial DNA (mtDNA), which has been attributed to the ubiquity of patrilocality across human cultures. However, this claim has been disputed, and previous analyses of matrilocal groups give conflicting results. Here we analyse mtDNA variation (complete mtDNA genome sequences via next-generation sequencing) and non-recombining regions of the Y-chromosome variation (Y-single-nucleotide-polymorphisms and Y-short-tandem-repeats (STR)) in a matrilocal group (the Semende) and a patrilocal group (the Besemah) from Sumatra.
View Article and Find Full Text PDFBecause of the time and cost associated with Sanger sequencing of complete human mtDNA genomes, practically all evolutionary studies have screened samples first to define haplogroups and then either selected a few samples from each haplogroup, or many samples from a particular haplogroup of interest, for complete mtDNA genome sequencing. Such biased sampling precludes many analyses of interest. Here, we used high-throughput sequencing platforms to generate, rapidly and inexpensively, 109 complete mtDNA genome sequences from random samples of individuals from three Filipino groups, including one Negrito group, the Mamanwa.
View Article and Find Full Text PDFTechnological and cultural innovations as well as climate changes are thought to have influenced the diffusion of major language phyla in sub-Saharan Africa. The most widespread and the richest in diversity is the Niger-Congo phylum, thought to have originated in West Africa ∼ 10,000 years ago (ya). The expansion of Bantu languages (a family within the Niger-Congo phylum) ∼ 5,000 ya represents a major event in the past demography of the continent.
View Article and Find Full Text PDFWe examined 395 mtDNA control-region sequences from Greenlandic Inuit and Canadian Kitikmeot Inuit with the aim of shedding light on the migration history that underlies the present geographic patterns of genetic variation at this locus in the Arctic. In line with previous studies, we found that Inuit populations carry only sequences belonging to haplotype clusters A2 and D3. However, a comparison of Arctic populations from Siberia, Canada, and Greenland revealed considerable differences in the frequencies of these haplotypes.
View Article and Find Full Text PDF