Publications by authors named "Eleonore V Lieffrig"

Head movement during long scan sessions degrades the quality of reconstruction in positron emission tomography (PET) and introduces artifacts, which limits clinical diagnosis and treatment. Recent deep learning-based motion correction work utilized raw PET list-mode data and hardware motion tracking (HMT) to learn head motion in a supervised manner. However, motion prediction results were not robust to testing subjects outside the training data domain.

View Article and Find Full Text PDF

Head motion correction is an essential component of brain PET imaging, in which even motion of small magnitude can greatly degrade image quality and introduce artifacts. Building upon previous work, we propose a new head motion correction framework taking fast reconstructions as input. The main characteristics of the proposed method are: (i) the adoption of a high-resolution short-frame fast reconstruction workflow; (ii) the development of a novel encoder for PET data representation extraction; and (iii) the implementation of data augmentation techniques.

View Article and Find Full Text PDF

Head motion occurring during brain positron emission tomography images acquisition leads to a decrease in image quality and induces quantification errors. We have previously introduced a Deep Learning Head Motion Correction (DL-HMC) method based on supervised learning of gold-standard Polaris Vicra motion tracking device and showed the potential of this method. In this study, we upgrade our network to a multi-task architecture in order to include image appearance prediction in the learning process.

View Article and Find Full Text PDF

Head movement is a major limitation in brain positron emission tomography (PET) imaging, which results in image artifacts and quantification errors. Head motion correction plays a critical role in quantitative image analysis and diagnosis of nervous system diseases. However, to date, there is no approach that can track head motion continuously without using an external device.

View Article and Find Full Text PDF