Publications by authors named "Elena D Nosyreva"

Article Synopsis
  • The study investigates the behavior of Piezo1 channels, which open in response to mechanical pressure, focusing on their transition from closed to open states.
  • Researchers used advanced pressure-clamp recordings to analyze new subconductance states of Piezo1, revealing that pressure increases the open state while reducing closed states.
  • By employing Markov-chain modeling, the team developed a four-state kinetic model that accurately describes the channel's function, aiding future research into Piezo1's role in different cell types.
View Article and Find Full Text PDF
Article Synopsis
  • Prune belly syndrome (PBS), or Eagle-Barret syndrome, is a rare condition mostly affecting males, characterized by urinary tract dilation, abdominal muscle deficiency, and undescended testes.
  • Researchers found a genetic link to PBS through a variant in the PIEZO1 gene, which plays a role in how cells respond to mechanical pressure.
  • Functional analysis showed that the PIEZO1 mutation leads to loss-of-function in certain channel activities, but the issue can potentially be fixed using Yoda1, a compound that activates PIEZO1, suggesting new treatment avenues for PBS.
View Article and Find Full Text PDF

Stromal cells in adult bone marrow that express leptin receptor (LEPR) are a critical source of growth factors, including stem cell factor (SCF), for the maintenance of haematopoietic stem cells and early restricted progenitors. LEPR cells are heterogeneous, including skeletal stem cells and osteogenic and adipogenic progenitors, although few markers have been available to distinguish these subsets or to compare their functions. Here we show that expression of an osteogenic growth factor, osteolectin, distinguishes peri-arteriolar LEPR cells poised to undergo osteogenesis from peri-sinusoidal LEPR cells poised to undergo adipogenesis (but retaining osteogenic potential).

View Article and Find Full Text PDF

Mechanotransduction is the process by which cells convert physical forces into electrochemical responses. On a molecular scale, these forces are detected by mechanically activated ion channels, which constitute the basis for hearing, touch, pain, cold, and heat sensation, among other physiological processes. Exciting high-resolution structural details of these channels are currently emerging that will eventually allow us to delineate the molecular determinants of gating and ion permeation.

View Article and Find Full Text PDF

The mental retardation, autistic features, and behavioral abnormalities characteristic of the Fragile X mental retardation syndrome result from the loss of function of the RNA-binding protein FMRP. The disease is usually caused by a triplet repeat expansion in the 5'UTR of the FMR1 gene. This leads to loss of function through transcriptional gene silencing, pointing to a key function for FMRP, but precluding genetic identification of critical activities within the protein.

View Article and Find Full Text PDF

Salient stimuli that modify behavior induce transcription of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and transport Arc mRNA into dendrites, suggesting that local Arc translation mediates synaptic plasticity that encodes such stimuli. Here, we demonstrate that long-term synaptic depression (LTD) in hippocampal neurons induced by group 1 metabotropic glutamate receptors (mGluRs) relies on rapid translation of Arc.

View Article and Find Full Text PDF

CASK is an evolutionarily conserved multidomain protein composed of an N-terminal Ca2+/calmodulin-kinase domain, central PDZ and SH3 domains, and a C-terminal guanylate kinase domain. Many potential activities for CASK have been suggested, including functions in scaffolding the synapse, in organizing ion channels, and in regulating neuronal gene transcription. To better define the physiological importance of CASK, we have now analyzed CASK "knockdown" mice in which CASK expression was suppressed by approximately 70%, and CASK knockout (KO) mice, in which CASK expression was abolished.

View Article and Find Full Text PDF

Fragile X syndrome (FXS), a form of human mental retardation, is caused by loss of function mutations in the fragile X mental retardation gene (FMR1). The protein product of FMR1, fragile X mental retardation protein (FMRP) is an RNA-binding protein and may function as a translational suppressor. Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) in hippocampal area CA1 is a form of synaptic plasticity that relies on dendritic protein synthesis.

View Article and Find Full Text PDF

The presynaptic and postsynaptic properties of synapses change over the course of postnatal development. Therefore, synaptic plasticity mechanisms would be expected to adapt to these changes to facilitate alterations of synaptic strength throughout ontogeny. Here, we identified developmental changes in long-term depression (LTD) mediated by group 1 metabotropic glutamate receptors (mGluRs) and dendritic protein synthesis in hippocampal CA1 slices (mGluR-LTD).

View Article and Find Full Text PDF

The scorpion toxin BeKm-1 is unique among a variety of known short scorpion toxins affecting potassium channels in its selective action on ether-a-go-go-related gene (ERG)-type channels. BeKm-1 shares the common molecular scaffold with other short scorpion toxins. The toxin spatial structure resolved by NMR consists of a short alpha-helix and a triple-stranded antiparallel beta-sheet.

View Article and Find Full Text PDF