Publications by authors named "Ehsan Sharif-Paghaleh"

Skin immune homeostasis is a multi-faceted process where dermal dendritic cells (DDCs) are key in orchestrating responses to environmental stressors. We have previously identified CD141CD14 DDCs as a skin-resident immunoregulatory population that is vitamin-D (VitD3) inducible from monocyte-derived DCs (moDCs), termed CD141 VitD3 moDCs. We demonstrate that CD141 DDCs and CD141 VitD3 moDCs share key immunological features including cell surface markers, reduced T cell stimulation, IL-10 production, and a common transcriptomic signature.

View Article and Find Full Text PDF

Although mesenchymal stem cells (MSCs) have exhibited promising immunomodulatory potential in preclinical studies, clinical studies have revealed variable results. These results often depend on environmental cues. Pre-conditioning MSCs with cytokines is one of the methods used to enhance their immunomodulatory effects.

View Article and Find Full Text PDF

Anesthesia and analgesia are major components of many interventional studies on laboratory animals. However, various studies have shown improper reporting or use of anesthetics/analgesics in research proposals and published articles. In many cases, it seems "anesthesia" and "analgesia" are used interchangeably, while they are referring to two different concepts.

View Article and Find Full Text PDF

Background: Mathematical modeling offers the possibility to select the optimal dose of a drug or vaccine. Considerable evidence show that many bacterial components can activate dendritic cells (DCs). Our previous report showed that multiple doses of DCs matured with Listeria monocytogenes led to tumor regression whereas multiple doses of CpG-matured DCs affected tumor reversely.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are an immunosuppressive subgroup of CD4 T cells which are identified by the expression of forkhead box protein P3 (Foxp3). The modulation capacity of these immune cells holds an important role in both transplantation and the development of autoimmune diseases. These cells are the main mediators of self-tolerance and are essential for avoiding excessive immune reactions.

View Article and Find Full Text PDF

Previous studies have demonstrated that maturation of dendritic cells (DCs) by pathogenic components through pathogen-associated molecular patterns (PAMPs) such as Listeria monocytogenes lysate (LML) or CpG DNA can improve cancer vaccination in experimental models. In this study, a mathematical model based on an artificial neural network (ANN) was used to predict several patterns and dosage of matured DC administration for improved vaccination. The ANN model predicted that repeated co-injection of tumor antigen (TA)-loaded DCs matured with CpG (CpG-DC) and LML (List-DC) results in improved antitumor immune response as well as a reduction of immunosuppression in the tumor microenvironment.

View Article and Find Full Text PDF

In vivo tracking and monitoring of adoptive cell transfer has a distinct importance in cell-based therapy. There are many imaging modalities for in vivo monitoring of biodistribution, viability and effectiveness of transferred cells. Some of these procedures are not applicable in the human body because of low sensitivity and high possibility of tissue damages.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) show considerable promise as a cellular immunotherapy for the treatment of a number of autoimmune and inflammatory disorders. However, the precise physiologically and therapeutically relevant mechanism(s) by which MSCs mediate immune modulation remains elusive. Dental pulp stem cells are a readily available source of MSCs that have been reported to show similar immune modulation in vitro as bone marrow MSCs.

View Article and Find Full Text PDF

Complement activation is a recognised mediator of myocardial ischaemia-reperfusion-injury (IRI) and cardiomyocytes are a known source of complement proteins including the central component C3, whose activation products can mediate tissue inflammation, cell death and profibrotic signalling. We investigated the potential to detect and quantify the stable covalently bound product C3d by external body imaging, as a marker of complement activation in heart muscle in a murine model of myocardial IRI. We used single-photon-emission-computed-tomography (SPECT) in conjunction with Technecium-labelled recombinant complement receptor 2 (Tc-rCR2), which specifically detects C3d at the site of complement activation.

View Article and Find Full Text PDF

Objectives: Toll-like receptors play an important role in innate and adaptive immune responses and can induce acute graft rejection, especially in the early phase after transplant. The aim of this study was to evaluate the possible association between TLR2, TLR4, and CD14 polymorphisms and acute renal rejection.

Materials And Methods: Our study included 239 patients seen between 2013 and 2015.

View Article and Find Full Text PDF

Background: It is important to study differential inflammatory cellular migration, particularly of eosinophils and neutrophils, in asthma and how this is influenced by environmental stimuli such as allergen exposure and the effects of anti asthma therapy.

Methods: We isolated blood neutrophils and eosinophils from 12 atopic asthmatic human volunteers (Group 1 - four Early Allergic Responders unchallenged (EAR); Group 2 - four Early and Late Allergic Responders (LAR) challenged; Group 3 - four EAR and LAR challenged and treated with systemic corticosteroids) using cGMP CD16 CliniMACS. Cells were isolated prior to allergen challenge where applicable, labelled with (99m)Tc-HMPAO and then re-infused intravenously.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) regulate most of encoding genes and protein. In this study, we aimed to investigate the expression levels of miR-142-5p, miR-142-3p, miR-155 and miR-223 in paired biopsy and peripheral blood mononuclear cell (PBMC) samples of renal allograft recipients with acute T-cell mediated rejection (ATCMR), compared with normal allografts (NA).

Methods: In this study, the expression levels of individual miRNAs were determined in biopsy and PBMC samples of 17 recipients with ATCMR and 18 recipients with NA.

View Article and Find Full Text PDF

Purpose: (111)In (typically as [(111)In]oxinate3) is a gold standard radiolabel for cell tracking in humans by scintigraphy. A long half-life positron-emitting radiolabel to serve the same purpose using positron emission tomography (PET) has long been sought. We aimed to develop an (89)Zr PET tracer for cell labelling and compare it with [(111)In]oxinate3 single photon emission computed tomography (SPECT).

View Article and Find Full Text PDF

DC vaccines have been used to induce tumour-specific cytotoxic T cells . However, this approach to cancer immunotherapy has had limited success. To be successful, injected DCs need to migrate to the LNs where they can stimulate effector T cells .

View Article and Find Full Text PDF

Background: Hitherto, in vivo studies of human granulocyte migration have been based on indiscriminate labeling of total granulocyte populations. We hypothesized that the kinetics of isolated human neutrophil and eosinophil migration through major organs in vivo are fundamentally different, with the corollary that studying unseparated populations distorts measurement of both.

Methods: Blood neutrophils and eosinophils were isolated on 2 separate occasions from human volunteers by using Current Good Manufacturing Practice CD16 CliniMACS isolation, labeled with technetium 99m-hexamethylpropyleneamine oxime, and then reinfused intravenously.

View Article and Find Full Text PDF

The occurrence of Graft-versus-Host Disease (GvHD) is a prevalent and potentially lethal complication that develops following hematopoietic stem cell transplantation. Humanized mouse models of xenogeneic-GvHD based upon immunodeficient strains injected with human peripheral blood mononuclear cells (PBMC; "Hu-PBMC mice") are important tools to study human immune function in vivo. The recent introduction of targeted deletions at the interleukin-2 common gamma chain (IL-2Rγ(null)), notably the NOD-scid IL-2Rγ(null) (NSG) and BALB/c-Rag2(null) IL-2Rγ(null) (BRG) mice, has led to improved human cell engraftment.

View Article and Find Full Text PDF

Human skin immune homeostasis, and its regulation by specialized subsets of tissue-residing immune sentinels, is poorly understood. In this study, we identify an immunoregulatory tissue-resident dendritic cell (DC) in the dermis of human skin that is characterized by surface expression of CD141, CD14, and constitutive IL-10 secretion (CD141(+) DDCs). CD141(+) DDCs possess lymph node migratory capacity, induce T cell hyporesponsiveness, cross-present self-antigens to autoreactive T cells, and induce potent regulatory T cells that inhibit skin inflammation.

View Article and Find Full Text PDF

Introduction: Corneal transplantation is a surgical procedure in which damaged or diseased cornea is replaced by cadaveric corneal tissue. It is the most common form of solid-tissue transplantation in humans but its pharmacotherapy (in relation to graft rejection) has changed little for several decades. The mainstay of treatment of corneal graft rejection remains corticosteroids but these are variably effective and are associated with potentially serious adverse effects.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) were identified several years ago and are key in controlling autoimmune diseases and limiting immune responses to foreign antigens, including alloantigens. In vivo imaging techniques including intravital microscopy as well as whole body imaging using bioluminescence probes have contributed to the understanding of in vivo Treg function, their mechanisms of action and target cells. Imaging of the human sodium/iodide symporter via Single Photon Emission Computed Tomography (SPECT) has been used to image various cell types in vivo.

View Article and Find Full Text PDF