Non-Mendelian transmission of mitochondria has been well established across most eukaryotes, however the genetic mechanism that governs this uniparental inheritance remains unclear. Plants in the genus Cucumis, specifically melon and cucumber, exhibit paternal transmission of the mitochondrial (mt) DNA, making them excellent models for exploring the molecular mechanisms underlying mitochondrial transmission. Here, we develop a toolkit to screen for mutants in mitochondrial inheritance (mti), and use fine mapping to successfully identify a mitochondrially targeted endonuclease gene (MTI1) controlling mitochondrial transmission.
View Article and Find Full Text PDFSenescence is an important trait in maize ( L.), a key crop that provides nutrition values and a renewable source of bioenergy worldwide. Genome-wide association studies (GWAS) can be used to identify causative genetic variants that influence the major physiological measures of senescence, which is used by plants as a defense mechanism against abiotic and biotic stresses affecting its performance.
View Article and Find Full Text PDFEpicuticular waxes on the surface of plant leaves are important for the tolerance to abiotic stresses and plant-parasite interactions. In the onion ( L.), the variation for the amounts and types of epicuticular waxes is significantly associated with less feeding damage by the insect (thrips).
View Article and Find Full Text PDF