Most low- and middle-income countries face significant public health challenges, exacerbated by the lack of reliable demographic data supporting effective planning and intervention. In such data-scarce settings, statistical models combining geolocated survey data with geospatial datasets enable the estimation of population counts at high spatial resolution in the absence of dependable demographic data sources. This study introduces a Bayesian model jointly estimating building and population counts, combining geolocated survey data and gridded geospatial datasets.
View Article and Find Full Text PDFThe national census is an essential data source to support decision-making in many areas of public interest. However, this data may become outdated during the intercensal period, which can stretch up to several decades. In this study, we develop a Bayesian hierarchical model leveraging recent household surveys and building footprints to produce up-to-date population estimates.
View Article and Find Full Text PDFTraditional sample designs for household surveys are contingent upon the availability of a representative primary sampling frame. This is defined using enumeration units and population counts retrieved from decennial national censuses that can become rapidly inaccurate in highly dynamic demographic settings. To tackle the need for representative sampling frames, we propose an original grid-based sample design framework introducing essential concepts of spatial sampling in household surveys.
View Article and Find Full Text PDF