The ubiquitin-binding protein p62, encoded by Sequestosome 1 (SQSTM1), is an essential molecular adaptor for selective autophagy. Heterozygous mutations deleting or disrupting the ubiquitin-associated (UBA) domain of p62 have been reported as the major genetic cause for Paget's disease of bone (PDB), the second most common skeletal disease, characterized by hyperactive osteoclasts and focal increases of bone turnover. In this study, we aimed to determine the impact of a similar sqstm1/p62 mutation on the skeleton of zebrafish.
View Article and Find Full Text PDFSkeletal diseases are often complex in their etiology and affect millions of people worldwide. Due to the aging population, there is a need for new therapeutics that could ease the burden on healthcare systems. As these diseases are complex, it is difficult and expensive to accurately model bone pathophysiology in a lab setting.
View Article and Find Full Text PDFJ Bone Miner Res
February 2023
Monogenic high bone mass (HBM) disorders are characterized by an increased amount of bone in general, or at specific sites in the skeleton. Here, we describe 59 HBM disorders with 50 known disease-causing genes from the literature, and we provide an overview of the signaling pathways and mechanisms involved in the pathogenesis of these disorders. Based on this, we classify the known HBM genes into HBM (sub)groups according to uniform Gene Ontology (GO) terminology.
View Article and Find Full Text PDFThe availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
February 2022
Genetic disorders of the skeleton encompass a diverse group of bone diseases differing in clinical characteristics, severity, incidence and molecular etiology. Of particular interest are the monogenic rare bone mass disorders, with the underlying genetic defect contributing to either low or high bone mass phenotype. Extensive, deep phenotyping coupled with high-throughput, cost-effective genotyping is crucial in the characterization and diagnosis of affected individuals.
View Article and Find Full Text PDFKnockout of the golgin giantin leads to skeletal and craniofacial defects driven by poorly studied changes in glycosylation and extracellular matrix deposition. Here, we sought to determine how giantin impacts the production of healthy bone tissue by focusing on the main protein component of the osteoid, type I collagen. Giantin mutant zebrafish accumulate multiple spontaneous fractures in their caudal fin, suggesting their bones may be more brittle.
View Article and Find Full Text PDFOsteoporosis and other conditions associated with low bone density or quality are highly prevalent, are increasing as the population ages and with increased glucocorticoid use to treat conditions with elevated inflammation. There is an unmet need for therapeutics which can target skeletal precursors to induce osteoblast differentiation and osteogenesis. Genes associated with high bone mass represent interesting targets for manipulation, as they could offer ways to increase bone density.
View Article and Find Full Text PDFNovel anabolic drug targets are needed to treat osteoporosis. Having established a large national cohort with unexplained high bone mass (HBM), we aimed to identify a novel monogenic cause of HBM and provide insight into a regulatory pathway potentially amenable to therapeutic intervention. We investigated a pedigree with unexplained HBM in whom previous sequencing had excluded known causes of monogenic HBM.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2019
Almost every cell in the human body extends a primary cilium. Defective cilia function leads to a set of disorders known as ciliopathies, which are characterised by debilitating developmental defects that affect many tissues. Here, we report a new role for regulator of calcineurin 2 (RCAN2) in primary cilia function.
View Article and Find Full Text PDFThe Golgi is the cellular hub for complex glycosylation, controlling accurate processing of complex proteoglycans, receptors, ligands and glycolipids. Its structure and organisation are dependent on golgins, which tether cisternal membranes and incoming transport vesicles. Here, we show that knockout of the largest golgin, giantin, leads to substantial changes in gene expression but only limited effects on Golgi structure.
View Article and Find Full Text PDFThe Golgi is essential for glycosylation of newly synthesised proteins including almost all cell-surface and extracellular matrix proteoglycans. Giantin, encoded by the gene, is a member of the golgin family of proteins that reside within the Golgi stack, but its function remains elusive. Loss of function of giantin in rats causes osteochondrodysplasia; knockout mice show milder defects, notably a cleft palate.
View Article and Find Full Text PDFHematopoietic stem cell (HSC) specification occurs in the embryonic aorta and requires Notch activation; however, most of the Notch-regulated elements controlling de novo HSC generation are still unknown. Here, we identify putative direct Notch targets in the aorta-gonad-mesonephros (AGM) embryonic tissue by chromatin precipitation using antibodies against the Notch partner RBPj. By ChIP-on-chip analysis of the precipitated DNA, we identified 701 promoter regions that were candidates to be regulated by Notch in the AGM.
View Article and Find Full Text PDFSustained forward migration through a fibrillar extracellular matrix requires localization of protrusive signals. Contact with fibronectin at the tip of a cell protrusion activates Rac1, and for linear migration it is necessary to dampen Rac1 activity in off-axial positions and redistribute Rac1 from non-protrusive membrane to the leading edge. Here, we identify interactions between coronin-1C (Coro1C), RCC2 and Rac1 that focus active Rac1 to a single protrusion.
View Article and Find Full Text PDFObesity is caused by an imbalance between energy intake and expenditure and has become a major health-care problem in western society. The central melanocortin system plays a crucial role in the regulation of feeding and energy expenditure, and functional loss of melanocortin receptor 4 (MC4R) is the most common genetic cause of human obesity. In this study, we present the first functional Mc4r knockout model in the rat, resulting from an N-ethyl-N-nitrosourea mutagenesis-induced point mutation.
View Article and Find Full Text PDF