The Maillard reaction, a chemical reaction between amino acids and sugars, is exploited to produce flavorful food ubiquitously, from the baking industry to our everyday lives. However, the Maillard reaction also occurs in all cells, from prokaryotes to eukaryotes, forming advanced glycation end-products (AGEs). AGEs are a heterogeneous group of compounds resulting from the irreversible reaction between biomolecules and α-dicarbonyls (α-DCs), including methylglyoxal (MGO), an unavoidable byproduct of anaerobic glycolysis and lipid peroxidation.
View Article and Find Full Text PDFStudies in diverse species have associated higher temperatures with shorter lifespan and lower temperatures with longer lifespan. These inverse effects of temperature on longevity are traditionally explained using the rate of living theory, which posits that higher temperatures increase chemical reaction rates, thus speeding up the aging process. Recent studies have identified specific molecules and cells that affect the longevity response to temperature, indicating that this response is regulated, not simply thermodynamic.
View Article and Find Full Text PDFA key question in current immunology is how the innate immune system generates high levels of specificity. Using the Caenorhabditis elegans model system, we demonstrate that functional loss of NMUR-1, a neuronal G-protein-coupled receptor homologous to mammalian receptors for the neuropeptide neuromedin U, has diverse effects on C. elegans innate immunity against various bacterial pathogens.
View Article and Find Full Text PDFCoronavirus Disease 2019 (COVID-19), caused by the novel virus SARS-CoV-2, is often more severe in older adults. Besides age, other underlying conditions such as obesity, diabetes, high blood pressure, and malignancies, which are also associated with aging, have been considered risk factors for COVID-19 mortality. A rapidly expanding body of evidence has brought up various scenarios for these observations and hyperinflammatory reactions associated with COVID-19 pathogenesis.
View Article and Find Full Text PDFIn the nematode Caenorhabditis elegans, signals derived from bacteria in the diet, the animal's major nutrient source, can modulate both behavior and healthspan. Here we describe a dual role for trimethylamine (TMA), a human gut flora metabolite, which acts as a nutrient signal and a neurotoxin. TMA and its associated metabolites are produced by the human gut microbiome and have been suggested to serve as risk biomarkers for diabetes and cardiovascular diseases.
View Article and Find Full Text PDFIncreasing evidence indicates that infection-triggered host defenses are regulated by the nervous system. However, the precise mechanisms of this regulation are not well understood. Here, we demonstrate that neuronal G protein-coupled receptor NPR-8 negatively regulates defense against pathogen infection by suppressing cuticular collagen expression.
View Article and Find Full Text PDFAeromonas hydrophila is considered as a potential risk to fish populations in the aquaculture industry and could also pose a serious threat to humans. In this study, the impact of A. hydrophila infection in the air-breathing catfish, Clarias gariepinus was analyzed using a multidimensional approach.
View Article and Find Full Text PDFUpon pathogen infection, the nervous system regulates innate immunity to confer coordinated protection to the host. However, the precise mechanisms of such regulation remain unclear. Previous studies have demonstrated that OCTR-1, a putative G protein-coupled receptor for catecholamine, functions in the sensory neurons designated "ASH" to suppress innate immune responses in It is unknown what molecules act as OCTR-1 ligands in the neural immune regulatory circuit.
View Article and Find Full Text PDFUpon pathogen infection, microbial killing pathways and cellular stress pathways are rapidly activated by the host innate immune system. These pathways must be tightly regulated because insufficient or excessive immune responses have deleterious consequences. Increasing evidence indicates that the nervous system regulates the immune system to confer coordinated protection to the host.
View Article and Find Full Text PDFUnlabelled: Caenorhabditis elegans-Pseudomonas aeruginosa infection model is commonly used for pathogenesis studies over the decades. In the present study, upon exposure to the Pseudomonas aeruginosa PAO1, the 2D-PAGE was performed to examine the total proteins differences of C. elegans during the PAO1 infection at different time durations (12-48h).
View Article and Find Full Text PDFCaenorhabditis elegans has been the preferred model system for many investigators to study pathogenesis. In the present investigation, regulation of C. elegans proteome was explored against V.
View Article and Find Full Text PDFJ Microbiol Biotechnol
October 2011
Vibrio parahaemolyticus, which owes its origin to the marine environment, is considered as one of the most common causes of infectious diarrhea worldwide. The present study investigated the pathogenicity of V. parahaemolyticus against the model organism, Caenorhabditis elegans.
View Article and Find Full Text PDFVibrio alginolyticus, a common bacterium in the marine environment, is a threat to marine animals and humans by causing serious infections. The present study reveals the establishment of a Caenorhabditis elegans infection model for Vibrio alginolyticus. The infection and colonization was localized in the animal by tagging V.
View Article and Find Full Text PDF