Publications by authors named "Douglas J Kennett"

Molecular research suggests that avocados ( Mill.) were domesticated multiple times in the Americas. Seed exchange, hybridization, and cloning have played an essential role across their wild distribution from Mexico to South America to create the modern varieties of today.

View Article and Find Full Text PDF

The eruption of Somma-Vesuvius in 79 CE buried several nearby Roman towns, killing the inhabitants and burying under pumice lapilli and ash deposits a unique set of civil and private buildings, monuments, sculptures, paintings, and mosaics that provide a rich picture of life in the empire. The eruption also preserved the forms of many of the dying as the ash compacted around their bodies. Although the soft tissue decayed, the outlines of the bodies remained and were recovered by excavators centuries later by filling the cavities with plaster.

View Article and Find Full Text PDF

The squash family (Cucurbitaceae) contains some of the most important crops cultivated worldwide and has played an important ecological, economic, and cultural role for millennia. In the American tropics, squashes were among the first cultivated crop species, but little is known about how their domestication unfolded. Here, we employ direct radiocarbon dating and morphological analyses of desiccated cucurbit seeds, rinds, and stems from El Gigante Rockshelter in Honduras to reconstruct human practices of selection and cultivation of Lagenaria siceraria, Cucurbita pepo, and Cucurbita moschata.

View Article and Find Full Text PDF

The Caribbean & Mesoamerica Biogeochemical Isotope Overview (CAMBIO) is an archaeological data community designed to integrate published biogeochemical data from the Caribbean, Mesoamerica, and southern Central America to address questions about dynamic interactions among humans, animals, and the environment in the region over the past 10,000 years. Here we present the CAMBIO human dataset, which consists of more than 16,000 isotopic measurements from human skeletal tissue samples (δC, δN, δS, δO, Sr/Sr, Pb, Pb, Pb, Pb) from 290 archaeological sites dating between 7000 BC to modern times. The open-access dataset also includes detailed chronological, contextual, and laboratory/sample preparation information for each measurement.

View Article and Find Full Text PDF

The origins of maize were the topic of vigorous debate for nearly a century, but neither the current genetic model nor earlier archaeological models account for the totality of available data, and recent work has highlighted the potential contribution of a wild relative, ssp. . Our population genetic analysis reveals that the origin of modern maize can be traced to an admixture between ancient maize and ssp.

View Article and Find Full Text PDF

El Gigante rockshelter in western Honduras provides a deeply stratified archaeological record of human-environment interaction spanning the entirety of the Holocene. Botanical materials are remarkably well preserved and include important tree (e.g.

View Article and Find Full Text PDF

Classic Maya populations living in peri-urban states were highly dependent on seasonally distributed rainfall for reliable surplus crop yields. Despite intense study of the potential impact of decadal to centennial-scale climatic changes on the demise of Classic Maya sociopolitical institutions (750-950 CE), its direct importance remains debated. We provide a detailed analysis of a precisely dated speleothem record from Yok Balum cave, Belize, that reflects local hydroclimatic changes at seasonal scale over the past 1600 years.

View Article and Find Full Text PDF

People could have hunted Madagascar's megafauna to extinction, particularly when introduced taxa and drought exacerbated the effects of predation. However, such explanations are difficult to test due to the scarcity of individual sites with unambiguous traces of humans, introduced taxa, and endemic megaherbivores. We excavated three coastal ponds in arid SW Madagascar and present a unique combination of traces of human activity (modified pygmy hippo bone, processed estuarine shell and fish bone, and charcoal), along with bones of extinct megafauna (giant tortoises, pygmy hippos, and elephant birds), extirpated fauna (e.

View Article and Find Full Text PDF

By sequencing 727 ancient individuals from the Southern Arc (Anatolia and its neighbors in Southeastern Europe and West Asia) over 10,000 years, we contextualize its Chalcolithic period and Bronze Age (about 5000 to 1000 BCE), when extensive gene flow entangled it with the Eurasian steppe. Two streams of migration transmitted Caucasus and Anatolian/Levantine ancestry northward, and the Yamnaya pastoralists, formed on the steppe, then spread southward into the Balkans and across the Caucasus into Armenia, where they left numerous patrilineal descendants. Anatolia was transformed by intra-West Asian gene flow, with negligible impact of the later Yamnaya migrations.

View Article and Find Full Text PDF

We present the first ancient DNA data from the Pre-Pottery Neolithic of Mesopotamia (Southeastern Turkey and Northern Iraq), Cyprus, and the Northwestern Zagros, along with the first data from Neolithic Armenia. We show that these and neighboring populations were formed through admixture of pre-Neolithic sources related to Anatolian, Caucasus, and Levantine hunter-gatherers, forming a Neolithic continuum of ancestry mirroring the geography of West Asia. By analyzing Pre-Pottery and Pottery Neolithic populations of Anatolia, we show that the former were derived from admixture between Mesopotamian-related and local Epipaleolithic-related sources, but the latter experienced additional Levantine-related gene flow, thus documenting at least two pulses of migration from the Fertile Crescent heartland to the early farmers of Anatolia.

View Article and Find Full Text PDF

Literary and archaeological sources have preserved a rich history of Southern Europe and West Asia since the Bronze Age that can be complemented by genetics. Mycenaean period elites in Greece did not differ from the general population and included both people with some steppe ancestry and others, like the Griffin Warrior, without it. Similarly, people in the central area of the Urartian Kingdom around Lake Van lacked the steppe ancestry characteristic of the kingdom's northern provinces.

View Article and Find Full Text PDF

The influence of climate change on civil conflict and societal instability in the premodern world is a subject of much debate, in part because of the limited temporal or disciplinary scope of case studies. We present a transdisciplinary case study that combines archeological, historical, and paleoclimate datasets to explore the dynamic, shifting relationships among climate change, civil conflict, and political collapse at Mayapan, the largest Postclassic Maya capital of the Yucatán Peninsula in the thirteenth and fourteenth centuries CE. Multiple data sources indicate that civil conflict increased significantly and generalized linear modeling correlates strife in the city with drought conditions between 1400 and 1450 cal.

View Article and Find Full Text PDF

Micronesia began to be peopled earlier than other parts of Remote Oceania, but the origins of its inhabitants remain unclear. We generated genome-wide data from 164 ancient and 112 modern individuals. Analysis reveals five migratory streams into Micronesia.

View Article and Find Full Text PDF
Article Synopsis
  • * Genetic analysis of ancient genomes from Verteba Cave shows that early agriculturalists had ancestry from both western hunter-gatherers and Near Eastern farmers, but lacked local Ukrainian Neolithic ancestry and included steppe ancestry.
  • * Findings from the Early and Late Bronze Age individuals indicate genetic admixture between Trypillians and incoming populations related to Yamnaya expansions, as well as connections to Beaker culture populations that surfaced after the Bell Beaker phenomenon.
View Article and Find Full Text PDF

Understanding the influence of climate change and population pressure on human conflict remains a critically important topic in the social sciences. Long-term records that evaluate these dynamics across multiple centuries and outside the range of modern climatic variation are especially capable of elucidating the relative effect of—and the interaction between—climate and demography. This is crucial given that climate change may structure population growth and carrying capacity, while both climate and population influence per capita resource availability.

View Article and Find Full Text PDF

The genetic prehistory of human populations in Central America is largely unexplored leaving an important gap in our knowledge of the global expansion of humans. We report genome-wide ancient DNA data for a transect of twenty individuals from two Belize rock-shelters dating between 9,600-3,700 calibrated radiocarbon years before present (cal. BP).

View Article and Find Full Text PDF

Multiple lines of genetic and archaeological evidence suggest that there were major demographic changes in the terminal Late Pleistocene epoch and early Holocene epoch of sub-Saharan Africa. Inferences about this period are challenging to make because demographic shifts in the past 5,000 years have obscured the structures of more ancient populations. Here we present genome-wide ancient DNA data for six individuals from eastern and south-central Africa spanning the past approximately 18,000 years (doubling the time depth of sub-Saharan African ancient DNA), increase the data quality for 15 previously published ancient individuals and analyse these alongside data from 13 other published ancient individuals.

View Article and Find Full Text PDF

The genetic consequences of species-wide declines are rarely quantified because the timing and extent of the decline varies across the species' range. The sea otter (Enhydra lutris) is a unique model in this regard. Their dramatic decline from thousands to fewer than 100 individuals per population occurred range-wide and nearly simultaneously due to the 18th-19th century fur trade.

View Article and Find Full Text PDF

Present-day people from England and Wales have more ancestry derived from early European farmers (EEF) than did people of the Early Bronze Age. To understand this, here we generated genome-wide data from 793 individuals, increasing data from the Middle to the Late Bronze Age and Iron Age in Britain by 12-fold, and western and central Europe by 3.5-fold.

View Article and Find Full Text PDF

During the Early Bronze Age, populations of the western Eurasian steppe expanded across an immense area of northern Eurasia. Combined archaeological and genetic evidence supports widespread Early Bronze Age population movements out of the Pontic-Caspian steppe that resulted in gene flow across vast distances, linking populations of Yamnaya pastoralists in Scandinavia with pastoral populations (known as the Afanasievo) far to the east in the Altai Mountains and Mongolia. Although some models hold that this expansion was the outcome of a newly mobile pastoral economy characterized by horse traction, bulk wagon transport and regular dietary dependence on meat and milk, hard evidence for these economic features has not been found.

View Article and Find Full Text PDF

Europe's prehistory oversaw dynamic and complex interactions of diverse societies, hitherto unexplored at detailed regional scales. Studying 271 human genomes dated ~4900 to 1600 BCE from the European heartland, Bohemia, we reveal unprecedented genetic changes and social processes. Major migrations preceded the arrival of "steppe" ancestry, and at ~2800 BCE, three genetically and culturally differentiated groups coexisted.

View Article and Find Full Text PDF

Maya archaeologists have long been interested in understanding ancient diets because they provide information about broad-scale economic and societal transformations. Though paleodietary studies have primarily relied on stable carbon (δ13C) and nitrogen (δ15N) isotopic analyses of human bone collagen to document the types of food people consumed, stable sulfur (δ34S) isotope analysis can potentially provide valuable data to identify terrestrial, freshwater, or marine/coastal food sources, as well as determine human mobility and migration patterns. Here we assess applications of δ34S for investigating Maya diet and migration through stable isotope analyses of human bone collagen (δ13C, δ15N, and δ34S) from 114 individuals from 12 sites in the Eastern Maya lowlands, temporally spanning from the Late Preclassic (300 BCE-300 CE) through Colonial periods (1520-1800 CE).

View Article and Find Full Text PDF

Recently expanded estimates for when humans arrived on Madagascar (up to approximately 10 000 years ago) highlight questions about the causes of the island's relatively late megafaunal extinctions (approximately 2000-500 years ago). Introduced domesticated animals could have contributed to extinctions, but the arrival times and past diets of exotic animals are poorly known. To conduct the first explicit test of the potential for competition between introduced livestock and extinct endemic megafauna in southern and western Madagascar, we generated new radiocarbon and stable carbon and nitrogen isotope data from the bone collagen of introduced ungulates (zebu cattle, ovicaprids and bushpigs, = 66) and endemic megafauna (pygmy hippopotamuses, giant tortoises and elephant birds, = 68), and combined these data with existing data from endemic megafauna ( = 282, including giant lemurs).

View Article and Find Full Text PDF

Objectives: We leverage recent bioarchaeological approaches and life history theory to address the implications of the osteological paradox in a study population. The goal of this article is to evaluate morbidity and mortality patterns as well as variability in the risk of disease and death during the Late Intermediate period (LIP; 950-1450 C.E.

View Article and Find Full Text PDF