Publications by authors named "Michael Isakov"

Present-day people from England and Wales have more ancestry derived from early European farmers (EEF) than did people of the Early Bronze Age. To understand this, here we generated genome-wide data from 793 individuals, increasing data from the Middle to the Late Bronze Age and Iron Age in Britain by 12-fold, and western and central Europe by 3.5-fold.

View Article and Find Full Text PDF

Surveys are a crucial tool for understanding public opinion and behaviour, and their accuracy depends on maintaining statistical representativeness of their target populations by minimizing biases from all sources. Increasing data size shrinks confidence intervals but magnifies the effect of survey bias: an instance of the Big Data Paradox. Here we demonstrate this paradox in estimates of first-dose COVID-19 vaccine uptake in US adults from 9 January to 19 May 2021 from two large surveys: Delphi-Facebook (about 250,000 responses per week) and Census Household Pulse (about 75,000 every two weeks).

View Article and Find Full Text PDF

Academic dishonesty has been and continues to be a major problem in America's schools and universities. Such dishonesty is especially important in high schools, where grades earned directly impact the academic careers of students for many years to come. The rising pressure to get the best grades in school, get into the best college, and land the best paying job is a cycle that has made academic dishonesty increase exponentially.

View Article and Find Full Text PDF

The creation of reversibly-actuating components that alter their shapes in a controllable manner in response to environmental stimuli is a grand challenge in active materials, structures, and robotics. Here we demonstrate a new reversible shape-changing component design concept enabled by 3D printing two stimuli responsive polymers-shape memory polymers and hydrogels-in prescribed 3D architectures. This approach uses the swelling of a hydrogel as the driving force for the shape change, and the temperature-dependent modulus of a shape memory polymer to regulate the time of such shape change.

View Article and Find Full Text PDF

Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature.

View Article and Find Full Text PDF

Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors.

View Article and Find Full Text PDF