Mitochondrial function relies heavily on the proper targeting and insertion of nuclear-encoded proteins into the outer mitochondrial membrane (OMM), a process mediated by specialised biogenesis factors known as insertases. These insertases are essential for the membrane integration of α-helical OMM proteins, which contain one or multiple hydrophobic transmembrane segments. While the general mechanisms of mitochondrial protein import are well established, recent research has shed light on the diversity and evolutionary conservation of OMM insertases across eukaryotic lineages.
View Article and Find Full Text PDFThe outer mitochondrial membrane (OMM) hosts a variety of proteins such as import machineries, enzymes, fission and fusion factors, and pore proteins. In Saccharomyces cerevisiae, the MIM complex, consisting of Mim1 and Mim2, mediates the insertion of α-helical proteins into the OMM. Until recently, it was unclear which proteins served this function in higher eukaryotes.
View Article and Find Full Text PDFMost cellular proteins require targeting to a distinct cellular compartment to function properly. A subset of proteins is distributed to two or more destinations in the cell and little is known about the mechanisms controlling the process of dual/multiple targeting. Here, we provide insight into the mechanism of dual targeting of proteins between mitochondria and peroxisomes.
View Article and Find Full Text PDFMitochondria derive the majority of their lipids from other organelles through contact sites. These lipids, primarily phosphoglycerolipids, are the main components of mitochondrial membranes. In the cell, neutral lipids like triacylglycerides (TAGs) are stored in lipid droplets, playing an important role in maintaining cellular health.
View Article and Find Full Text PDFMethods Enzymol
October 2024
Mitochondria and peroxisomes are mutually dependent organelles that share several membrane proteins that carry out the same function in both organelles. To study the unique features of these dually localized proteins in each of the two organelles, it is essential to separate mitochondria from peroxisomes. Isolating organelles from cells of Baker's yeast, Saccharomyces cerevisiae, is crucial for our understanding of the biogenesis and functions of proteins.
View Article and Find Full Text PDFContact-sites are specialized zones of proximity between two organelles, essential for organelle communication and coordination. The formation of contacts between the Endoplasmic Reticulum (ER), and other organelles, relies on a unique membrane environment enriched in sterols. However, how these sterol-rich domains are formed and maintained had not been understood.
View Article and Find Full Text PDFThe respiratory chain in aerobic organisms is composed of a number of membrane-bound protein complexes that link electron transfer to proton translocation across the membrane. In mitochondria, the final electron acceptor, complex IV (CIV), receives electrons from dimeric complex III (CIII), via a mobile electron carrier, cytochrome . In the present study, we isolated the CIIICIV supercomplex from the fission yeast and determined its structure with bound cyt.
View Article and Find Full Text PDFMitochondrial outer membrane β-barrel proteins are encoded in the nucleus, translated in the cytosol and then targeted to and imported into the respective organelles. Detailed studies have uncovered the mechanisms involved in the import of these proteins and identified the targeting signals and the cytosolic factors that govern their proper biogenesis. Recently, de novo designed eight-stranded β-barrel proteins (Tmb2.
View Article and Find Full Text PDFJ Cell Biol
August 2023
Tail-anchored proteins are tethered to membranes of the ER, mitochondria, and peroxisomes. In this issue, Pleiner and colleagues (2023. J.
View Article and Find Full Text PDFSignal-anchored (SA) proteins are anchored into the mitochondrial outer membrane (OM) via a single transmembrane segment at their N-terminus while the bulk of the proteins is facing the cytosol. These proteins are encoded by nuclear DNA, translated on cytosolic ribosomes, and are then targeted to the organelle and inserted into its OM by import factors. Recently, research on the insertion mechanisms of these proteins into the mitochondrial OM have gained a lot of attention.
View Article and Find Full Text PDFMitochondria dysfunction is involved in the pathomechanism of many illnesses including Parkinson's disease. PINK1, which is mutated in some cases of familial Parkinsonism, is a key component in the degradation of damaged mitochondria by mitophagy. The accumulation of PINK1 on the mitochondrial outer membrane (MOM) of compromised organelles is crucial for the induction of mitophagy, but the molecular mechanism of this process is still unresolved.
View Article and Find Full Text PDFJ Cell Biol
April 2022
The mitochondrial outer membrane (MOM) harbors proteins that traverse the membrane via several helical segments and are called multi-span proteins. To obtain new insights into the biogenesis of these proteins, we utilized yeast mitochondria and the multi-span protein Om14. Testing different truncation variants, we show that while only the full-length protein contains all the information that assures perfect targeting specificity, shorter variants are targeted to mitochondria with compromised fidelity.
View Article and Find Full Text PDFMitochondrial functions are tightly regulated by nuclear activity, requiring extensive communication between these organelles. One way by which organelles can communicate is through contact sites, areas of close apposition held together by tethering molecules. While many contacts have been characterized in yeast, the contact between the nucleus and mitochondria was not previously identified.
View Article and Find Full Text PDFVoltage dependent anion-selective channel (VDAC) is the most abundant protein in the mitochondrial outer membrane. It is a membrane embedded β-barrel protein composed of 19 mostly anti-parallel β-strands that form a hydrophilic pore. Similar to the vast majority of mitochondrial proteins, VDAC is encoded by nuclear DNA, and synthesized on cytosolic ribosomes.
View Article and Find Full Text PDFMost mitochondrial proteins are synthesized as precursors in the cytosol and post-translationally transported into mitochondria. The mitochondrial surface protein Tom70 acts at the interface of the cytosol and mitochondria. In vitro import experiments identified Tom70 as targeting receptor, particularly for hydrophobic carriers.
View Article and Find Full Text PDFChaperones are essential for assisting protein folding and for transferring poorly soluble proteins to their functional locations within cells. Hydrophobic interactions drive promiscuous chaperone-client binding, but our understanding of how additional interactions enable client specificity is sparse. Here, we decipher what determines binding of two chaperones (TIM8·13 and TIM9·10) to different integral membrane proteins, the all-transmembrane mitochondrial carrier Ggc1 and Tim23, which has an additional disordered hydrophilic domain.
View Article and Find Full Text PDFPINK1 loss-of-function mutations cause early onset Parkinson disease. PINK1-Parkin mediated mitophagy has been well studied, but the relevance of the endogenous process in the brain is debated. Here, the absence of PINK1 in human dopaminergic neurons inhibits ionophore-induced mitophagy and reduces mitochondrial membrane potential.
View Article and Find Full Text PDFSome organisms, like Trichomonas vaginalis, contain mitochondria-related hydrogen-producing organelles, called hydrogenosomes. The protein targeting into these organelles is proposed to be similar to the well-studied mitochondria import. Indeed, S.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2020
Approximately half of eukaryotic proteins reside in organelles. To reach their correct destination, such proteins harbor targeting signals recognized by dedicated targeting pathways. It has been shown that differences in targeting signals alter the efficiency in which proteins are recognized and targeted.
View Article and Find Full Text PDFWhile targeting of proteins synthesized in the cytosol to any organelle is complex, mitochondria present the most challenging of destinations. First, import of nuclear-encoded proteins needs to be balanced with production of mitochondrial-encoded ones. Moreover, as mitochondria are divided into distinct subdomains, their proteins harbor a number of different targeting signals and biophysical properties.
View Article and Find Full Text PDFMitochondria harbor in their outer membrane (OM) proteins of different topologies. These proteins are encoded by the nuclear DNA, translated on cytosolic ribosomes and inserted into their target organelle by sophisticated protein import machineries. Recently, considerable insights have been accumulated on the insertion pathways of proteins into the mitochondrial OM.
View Article and Find Full Text PDFBiogenesis of mitochondrial outer membrane proteins involves their integration into the lipid bilayer. Among these proteins are those that form a single-span topology, but our understanding of their biogenesis is scarce. In this study, we found that the MIM complex is required for the membrane insertion of some single-span proteins.
View Article and Find Full Text PDFSecretins form large multimeric pores in the outer membrane (OM) of Gram-negative bacteria. These pores are part of type II and III secretion systems (T2SS and T3SS, respectively) and are crucial for pathogenicity. Recent structural studies indicate that secretins form a structure rich in β-strands.
View Article and Find Full Text PDFMitochondria are unique organelles harboring two distinct membranes, the mitochondrial inner and outer membrane (MIM and MOM, respectively). Mitochondria comprise only a subset of metabolic pathways for the synthesis of membrane lipids; therefore most lipid species and their precursors have to be imported from other cellular compartments. One such import process is mediated by the ER mitochondria encounter structure (ERMES) complex.
View Article and Find Full Text PDF