Publications by authors named "Dominique Boucher"

Background: Over 10 million patients undergoing non-cardiac surgery annually experience major cardiovascular complications within 30 days, many due to destabilized atherosclerotic plaques. Reverse cholesterol transport (RCT), a key pathway for cholesterol removal by HDL and apoA-I, is critical in preventing plaque progression. While surgery-induced inflammation is known to impair HDL function, its effects on RCT and plaque stability remain unclear.

View Article and Find Full Text PDF

Background: Aging is a well-established risk factor for the development and progression of atherosclerosis, but the molecular mechanisms underlying this relationship remain poorly defined, and its role in atherosclerosis regression is unknown. To uncover age-related alterations that may impair atherosclerosis regression, we investigated the response of young and old macrophages to atherogenic lipoproteins in vitro and in vivo.

Methods: Metabolic and proteomic studies were performed in vitro using macrophages differentiated from the bone marrow of young or old mice.

View Article and Find Full Text PDF

Background: Despite female genital mutilation/cutting (FGM/C) practices being an illegal form of gender-based violence in Canada, this practice impacts many Canadians. Lack of education and training among Canadian health-care providers has resulted in systematic barriers to care. Awareness and FGM/C-related education among Canadian health-care providers must be urgently assessed.

View Article and Find Full Text PDF

Graduate students are vital to the creation of research and innovation in Canada. The National Graduate Student Finance Survey was launched in 2021 by the Ottawa Science Policy Network to investigate the financial realities of Canadian graduate students. Closing in April 2022, the survey received 1305 responses from graduate students representing various geographical locations, years of study, fields of education, and demographic backgrounds.

View Article and Find Full Text PDF

We conducted a systematic review and meta-analysis of randomized control trials to formally assess the safety and efficacy of autologous whole cell vaccines as immunotherapies for solid tumors. Our primary safety outcome was number, and grade of adverse events. Our primary efficacy outcome was clinical responses.

View Article and Find Full Text PDF

Top-down effects, like predation, are drivers of insect outbreaks, but bottom-up effects, like host nutritional quality, also influence outbreaks and could in turn be altered by insect-caused defoliation. We evaluated the prediction that herbivory leads to a positive feedback on outbreak severity as nutrient concentration in plant tissues increases through improved soil nutrient availability from frass and litter deposition. Over seven years of a spruce budworm outbreak, we quantified litter nutrient fluxes, soil nitrogen availability, and host tree foliar nutrient status along a forest susceptibility gradient.

View Article and Find Full Text PDF

Rationale: Atherosclerosis is characterized by an accumulation of foam cells within the arterial wall, resulting from excess cholesterol uptake and buildup of cytosolic lipid droplets (LDs). Autophagy promotes LD clearance by freeing stored cholesterol for efflux, a process that has been shown to be atheroprotective. While the role of autophagy in LD catabolism has been studied in macrophage-derived foam cells, this has remained unexplored in vascular smooth muscle cell (VSMC)-derived foam cells that constitute a large fraction of foam cells within atherosclerotic lesions.

View Article and Find Full Text PDF

Autologous cell vaccines use a patient's tumor cells to stimulate a broad antitumor response in vivo. This approach shows promise for treating hematologic cancers in early phase clinical trials, but overall safety and efficacy remain poorly described. We conducted a systematic review assessing the use of autologous cell vaccination in treating hematologic cancers.

View Article and Find Full Text PDF

Natural Killer (NK) cells are innate immune responders critical for viral clearance and immunomodulation. Despite their vital role in viral infection, the contribution of NK cells in fighting SARS-CoV-2 has not yet been directly investigated. Insights into pathophysiology and therapeutic opportunities can therefore be inferred from studies assessing NK cell phenotype and function during SARS, MERS, and COVID-19.

View Article and Find Full Text PDF

Canada's forests are shaped by disturbances such as fire, insect outbreaks, and droughts that often overlap in time and space. The resulting cumulative disturbance risks and potential impacts on forests are generally not well accounted for by models used to predict future impacts of disturbances on forest. This study aims at projecting future cumulative effects of four main natural disturbances, fire, mountain pine beetle, spruce budworm and drought, on timber volumes across Canada's forests using an approach that accounts for potential overlap among disturbances.

View Article and Find Full Text PDF

Neuronal migration disorders such as lissencephaly and subcortical band heterotopia are associated with epilepsy and intellectual disability. DCX, PAFAH1B1 and TUBA1A are mutated in these disorders; however, corresponding mouse mutants do not show heterotopic neurons in the neocortex. In contrast, spontaneously arisen HeCo mice display this phenotype, and our study revealed that misplaced apical progenitors contribute to heterotopia formation.

View Article and Find Full Text PDF

The Suppressor of fused (Su(fu)) protein is known to be a negative regulator of Hedgehog (Hh) signal transduction in Drosophila imaginal discs and embryonic development. It is antagonized by the kinase Fused (Fu) since Su(fu) null mutations fully suppress the lack of Fu kinase activity. In this study, we overexpressed the Su(fu) gene in imaginal discs and observed opposing effects depending on the position of the cells, namely a repression of Hh target genes in cells receiving Hh and their ectopic expression in cells not receiving Hh.

View Article and Find Full Text PDF

Polyglutamylation of tubulin has been implicated in several functions of microtubules, but the identification of the responsible enzyme(s) has been challenging. We found that the neuronal tubulin polyglutamylase is a protein complex containing a tubulin tyrosine ligase-like (TTLL) protein, TTLL1. TTLL1 is a member of a large family of proteins with a TTL homology domain, whose members could catalyze ligations of diverse amino acids to tubulins or other substrates.

View Article and Find Full Text PDF

Sufu (Suppressor of fused) is a negative regulator of the Hedgehog signal-transduction pathway, interacting directly with the Gli family of transcription factors. However, its function remains poorly understood. In the present study, we determined the expression, tissue distribution and biochemical properties of mSufu (mouse Sufu) protein.

View Article and Find Full Text PDF

Polyglutamylation is a post-translational modification initially discovered on tubulin. It has been implicated in multiple microtubule functions, including neuronal differentiation, axonemal beating and stability of the centrioles, and shown to modulate the interaction between tubulin and microtubule associated proteins. The enzymes catalysing this modification are not yet known.

View Article and Find Full Text PDF

Type I lissencephaly is a cortical malformation disorder characterized by disorganized cortical layers and gyral abnormalities and associated with severe cognitive impairment and epilepsy. The exact pathophysiological mechanisms underlying the epilepsy and mental retardation in this and related disorders remain unknown. Two genes, LIS1 and doublecortin, have both been shown to be mutated in a large proportion of cases of type I lissencephaly and a milder allelic disorder, subcortical laminar heterotopia (SCLH).

View Article and Find Full Text PDF

The distribution of a nuclear antigen ofPleurodeles waltl oocytes, recognized by the monoclonal antibody B24/1, has been studied during oogenesis and early embryonic development. In stage I oocytes the antigen was localized in the nucleoplasm and on two atypical structures of lampbrush chromosomes, the spheres (S) and the mass (M). The immunostaining increased as the oocyte developed.

View Article and Find Full Text PDF