Publications by authors named "Dioulde Diao"

Background: The high recurrence of glioblastoma (GB) that occurs adjacent to the resection cavity within two years of diagnosis urges an improvement of therapies oriented to GB local control. Photodynamic therapy (PDT) has been proposed to cleanse infiltrating tumor cells from parenchyma to ameliorate short long-term progression-free survival. We examined 5-aminolevulinic acid (5-ALA)-mediated PDT effects as therapeutical treatment and determined optimal conditions for PDT efficacy without causing phototoxic injury to the normal brain tissue.

View Article and Find Full Text PDF

Introduction: Glioblastoma (GBM) remains the most frequent and lethal primary brain tumor in adults, despite advancements in surgical resection techniques and adjuvant chemo- and radiotherapy. The most frequent recurrence pattern (75-90%) occurs in the form of continuous growth from the border of the surgical cavity, thus emphasizing the need for locoregional tumor control. Fluorescence-guided surgical resection using 5-ALA has been widely implemented in surgical protocols for such tumors.

View Article and Find Full Text PDF

Glioblastoma multiforme, the deadliest primary brain tumor, is characterized by an excessive and aberrant neovascularization. The initial expectations raised by anti-angiogenic drugs were soon tempered due to their limited efficacy in improving the overall survival. Intrinsic resistance and escape mechanisms against anti-VEGF therapies evidenced that tumor angiogenesis is an intricate multifaceted phenomenon and that vessels not only support the tumor but exert indispensable interactions for resistance and spreading.

View Article and Find Full Text PDF

The anionic cobaltabis (dicarbollide) [3,3'-Co(1,2-CBH)], [-COSAN], is the most studied icosahedral metallacarborane. The sodium salts of [-COSAN] could be an ideal candidate for the anti-cancer treatment Boron Neutron Capture Therapy (BNCT) as it possesses the ability to readily cross biological membranes thereby producing cell cycle arrest in cancer cells. BNCT is a cancer therapy based on the potential of B atoms to produce α particles that cross tissues in which the B is accumulated without damaging the surrounding healthy tissues, after being irradiated with low energy thermal neutrons.

View Article and Find Full Text PDF