Biomed Pharmacother
February 2024
Metastasis is the leading cause of cancer mortality. Metastatic cancer is notoriously difficult to treat, and it accounts for the majority of cancer-related deaths. The ether lipid edelfosine is the prototype of a family of synthetic antitumor compounds collectively known as alkylphospholipid analogs, and its antitumor activity involves lipid raft reorganization.
View Article and Find Full Text PDFBackground: The high recurrence of glioblastoma (GB) that occurs adjacent to the resection cavity within two years of diagnosis urges an improvement of therapies oriented to GB local control. Photodynamic therapy (PDT) has been proposed to cleanse infiltrating tumor cells from parenchyma to ameliorate short long-term progression-free survival. We examined 5-aminolevulinic acid (5-ALA)-mediated PDT effects as therapeutical treatment and determined optimal conditions for PDT efficacy without causing phototoxic injury to the normal brain tissue.
View Article and Find Full Text PDFDespite strong preclinical data, the therapeutic benefit of the RANKL inhibitor, denosumab, in breast cancer patients, beyond the bone, is unclear. Aiming to select patients who may benefit from denosumab, we hereby analyzed RANK and RANKL protein expression in more than 2,000 breast tumors (777 estrogen receptor-negative, ER ) from four independent cohorts. RANK protein expression was more frequent in ER tumors, where it associated with poor outcome and poor response to chemotherapy.
View Article and Find Full Text PDFIntroduction: Glioblastoma (GBM) remains the most frequent and lethal primary brain tumor in adults, despite advancements in surgical resection techniques and adjuvant chemo- and radiotherapy. The most frequent recurrence pattern (75-90%) occurs in the form of continuous growth from the border of the surgical cavity, thus emphasizing the need for locoregional tumor control. Fluorescence-guided surgical resection using 5-ALA has been widely implemented in surgical protocols for such tumors.
View Article and Find Full Text PDFGlioblastoma multiforme, the deadliest primary brain tumor, is characterized by an excessive and aberrant neovascularization. The initial expectations raised by anti-angiogenic drugs were soon tempered due to their limited efficacy in improving the overall survival. Intrinsic resistance and escape mechanisms against anti-VEGF therapies evidenced that tumor angiogenesis is an intricate multifaceted phenomenon and that vessels not only support the tumor but exert indispensable interactions for resistance and spreading.
View Article and Find Full Text PDFInt J Mol Sci
September 2021
The anionic cobaltabis (dicarbollide) [3,3'-Co(1,2-CBH)], [-COSAN], is the most studied icosahedral metallacarborane. The sodium salts of [-COSAN] could be an ideal candidate for the anti-cancer treatment Boron Neutron Capture Therapy (BNCT) as it possesses the ability to readily cross biological membranes thereby producing cell cycle arrest in cancer cells. BNCT is a cancer therapy based on the potential of B atoms to produce α particles that cross tissues in which the B is accumulated without damaging the surrounding healthy tissues, after being irradiated with low energy thermal neutrons.
View Article and Find Full Text PDFThe tumour necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumour necrosis factor ligand family and has been shown to be overexpressed in tumoral cells together with the fibroblast growth factor-inducible 14 (Fn14) receptor. TWEAK-Fn14 interaction triggers a set of intracellular pathways responsible for tumour cell invasion and migration, as well as proliferation and angiogenesis. Hence, modulation of the TWEAK-Fn14 interaction is an important therapeutic goal.
View Article and Find Full Text PDFAnal Bioanal Chem
August 2020
Current histology techniques, such as tissue staining or histochemistry protocols, provide very limited chemical information about the tissues. Chemical imaging technologies such as infrared, Raman, and mass spectrometry imaging, are powerful analytical techniques with a huge potential in describing the chemical composition of sample surfaces. In this work, three images of the same tissue slice using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, infrared microspectroscopy, and an RGB picture from a conventional hematoxylin/eosin (H/E) staining are simultaneously analyzed.
View Article and Find Full Text PDFGRP94 is an ATP-dependent chaperone able to regulate pro-oncogenic signaling pathways. Previous studies have shown a critical role of GRP94 in brain metastasis (BrM) pathogenesis and progression. In this work, an untargeted lipidomic analysis revealed that some lipid species were altered in GRP94-deficient cells, specially GM2 and GM3 gangliosides.
View Article and Find Full Text PDFMetabolic adaptation may happen in response to the pressure exerted by the microenvironment and is a key step in survival of metastatic cells. Brain metastasis occurs as a consequence of the systemic dissemination of tumor cells, a fact that correlates with poor prognosis and high morbidity due to the difficulty in identifying biomarkers that allow a more targeted therapy. Previously, we performed transcriptomic analysis of human breast cancer patient samples and evaluated the differential expression of genes in brain metastasis (BrM) compared to lung, bone and liver metastasis.
View Article and Find Full Text PDFRaman spectroscopy (RS) has shown promise as a tool to reveal biochemical changes that occur in cancer processes at the cellular level. However, when analyzing clinical samples, RS requires improvements to be able to resolve biological components from the spectra. We compared the strengths of Multivariate Curve Resolution (MCR) versus Principal Component Analysis (PCA) to deconvolve meaningful biological components formed by distinct mixtures of biological molecules from a set of mixed spectra.
View Article and Find Full Text PDFFN14 has been implicated in many intracellular signaling pathways, and GRP94 is a well-known endoplasmic reticulum protein regulated by glucose. Recently, both have been associated with metastasis progression in breast cancer patients. We studied the usefulness of FN14 and GRP94 expression to stratify breast cancer patients according their risk of brain metastasis (BrM) progression.
View Article and Find Full Text PDFBrain metastasis is a devastating problem in patients with breast, lung and melanoma tumors. GRP94 and FN14 are predictive biomarkers over-expressed in primary breast carcinomas that metastasized in brain. To further validate these brain metastasis biomarkers, we performed a multicenter study including 318 patients with breast carcinomas.
View Article and Find Full Text PDFBone metastasis is the most common distant relapse in breast cancer. The identification of key proteins involved in the osteotropic phenotype would represent a major step toward the development of new prognostic markers and therapeutic improvements. The aim of this study was to characterize functional phenotypes that favor bone metastasis in human breast cancer.
View Article and Find Full Text PDFCurrently, survival of breast cancer patients with brain metastasis ranges from 2 to 16 months. In experimental brain metastasis studies, only 10% of lesions with the highest permeability exhibited cytotoxic responses to paclitaxel or doxorubicin. Therefore, radiation is the most frequently used treatment, and sensitizing agents, which synergize with radiation, can improve the efficacy of the therapy.
View Article and Find Full Text PDFAlthough molecular classification brings interesting insights into breast cancer taxonomy, its implementation in daily clinical care is questionable because of its expense and the information supplied in a single sample allocation is not sufficiently reliable. New approaches, based on a panel of small molecules derived from the global or targeted analysis of metabolic profiles of cells, have found a correlation between activation of de novo lipogenesis and poorer prognosis and shorter disease-free survival for many tumors. We hypothesized that the lipid content of breast cancer cells might be a useful indirect measure of a variety of functions coupled to breast cancer progression.
View Article and Find Full Text PDFWe carried out a systems-level study of the mechanisms underlying organ-specific metastases of breast cancer. We followed a network-based approach using microarray expression data from human breast cancer metastases to select organ-specific proteins that exert a range of functions allowing cell survival and growth in the microenvironment of distant organs. MinerProt, a home-made software application, was used to group organ-specific signatures of brain (1191 genes), bone (1623 genes), liver (977 genes) and lung (254 genes) metastases by function and select the most differentially expressed gene in each function.
View Article and Find Full Text PDFThe increasing incidence of breast cancer brain metastasis in patients with otherwise well-controlled systemic cancer is a key challenge in cancer research. It is necessary to understand the properties of brain-tropic tumor cells to identify patients at risk for brain metastasis. Here we attempt to identify functional phenotypes that might enhance brain metastasis.
View Article and Find Full Text PDFClin Transl Oncol
November 2009
Activation of oncogenes and inactivation of tumour suppressor genes are common events during breast cancer initiation and progression and often determine treatment responsiveness. Indeed, these events need to be recreated in in vitro systems and in mouse cancer models in order to unravel the molecular mechanisms involved in breast cancer initiation and metastasis and assess their possible impact on responses to anticancer drugs. Optical-based imaging models are used to investigate and to follow important tumour progression processes.
View Article and Find Full Text PDFThe lungs are a frequent target of metastatic breast cancer cells, but the underlying molecular mechanisms are unclear. All existing data were obtained either using statistical association between gene expression measurements found in primary tumors and clinical outcome, or using experimentally derived signatures from mouse tumor models. Here, we describe a distinct approach that consists of using tissue surgically resected from lung metastatic lesions and comparing their gene expression profiles with those from nonpulmonary sites, all coming from breast cancer patients.
View Article and Find Full Text PDFTo examine the molecular mechanisms underlying breast cancer metastasis in liver and search for potential markers of metastatic progression in soft-tissue, we analyzed metastatic variants developed from the highly metastatic MDA-MB 435 cell line through in vivo stepwise selection in the athymic mice. Comparative proteomic analysis using two-dimensional electrophoresis (2DE-DIGE) revealed that 74 protein spots were reproducibly more than doubled in liver metastatic cells compared to parental counterpart. From 22 proteins identified by MALDI-TOF, belonging to intermediate filaments, intracellular transport and ATP synthesis, we generated a protein-protein interaction network containing 496 nodes, 12 of which interacted.
View Article and Find Full Text PDFJ Proteome Res
March 2008
Secondary to the increased survival following chemotherapy, brain metastases have recently become a significant clinical problem for breast cancer patients. The aim of this study was to characterize those functional phenotypes that might enhance brain metastasis in breast cancer cells. We first analyzed by two-dimensional electrophoresis (2DE-DIGE) differences in protein expression between parental MDA-MB 435 cells and the brain metastatic variant 435-Br1, obtaining 19 identified proteins by peptide mass fingerprinting, 11 under-expressed (<2-fold) and 8 overexpressed (>2-fold) in 435-Br1.
View Article and Find Full Text PDFGenes that mediate breast cancer metastasis to lung are different from those which mediate bone metastasis. However, which markers accounts for the diversity of breast cancer metastasis remains unknown. The aim of this study was identify proteins associated with the soft-tissue metastatic ability of breast cancer tumors in metastases, coupling microarray data from clinical metastases and immunohistochemistry, for further screening for early detection at the first diagnosis in patients.
View Article and Find Full Text PDF