Publications by authors named "Dimitrios Tsitsonis"

Article Synopsis
  • Imaging hydrogen motion at ultrafast timescales is difficult due to the low mass and small scattering cross-section of hydrogen atoms and molecules.
  • The study proposes a new method called time- and momentum-resolved photoelectron diffraction (TMR-PED) to address these challenges, demonstrated through the dissociation of a neutral hydrogen molecule from methanol dication.
  • TMR-PED allows for direct imaging of hydrogen dynamics by analyzing molecular-frame photoelectron angular distributions, with supporting experiments showcasing the method's potential effectiveness at few-femtosecond resolution.
View Article and Find Full Text PDF

We report a joint experimental and theoretical study of the differential photoelectron circular dichroism (PECD) in inner-shell photoionization of uniaxially oriented trifluoromethyloxirane. By adjusting the photon energy of the circularly polarized synchrotron radiation, we address 1s-photoionization of the oxygen, different carbon, and all fluorine atoms. The photon energies were chosen such that in all cases electrons with a similar kinetic energy of about 11 eV are emitted.

View Article and Find Full Text PDF

How long does it take to emit an electron from an atom? This question has intrigued scientists for decades. As such emission times are in the attosecond regime, the advent of attosecond metrology using ultrashort and intense lasers has re-triggered strong interest on the topic from an experimental standpoint. Here, we present an approach to measure such emission delays, which does not require attosecond light pulses, and works without the presence of superimposed infrared laser fields.

View Article and Find Full Text PDF

The photoelectron circular dichroism (PECD) of the O 1s-photoelectrons of trifluoromethyloxirane (TFMOx) is studied experimentally and theoretically for different photoelectron kinetic energies. The experiments were performed employing circularly polarized synchrotron radiation and coincident electron and fragment ion detection using cold target recoil ion momentum spectroscopy. The corresponding calculations were performed by means of the single center method within the relaxed-core Hartree-Fock approximation.

View Article and Find Full Text PDF